Array ( [0] => {{Short description|Process that separates solids from fluids}} [1] => [2] => {{About|the process of solid-fluid separation|the mathematical concept|Filtration (mathematics)|the stochastic concept|Filtration (probability theory)|filtration used in winemaking|Clarification and stabilization of wine||Filter (disambiguation)}} [3] => {{Use dmy dates|date=December 2020}} [4] => {{more citations needed|date=August 2018}} [5] => [[File: FilterDiagram.svg|right|thumb|300px|Diagram of simple filtration: oversize particles in the '''feed''' cannot pass through the lattice structure of the filter, while fluid and small particles pass through, becoming '''filtrate'''.]] [6] => [7] => '''Filtration''' is a physical [[separation process]] that separates [[solid]] matter and [[fluid]] from a mixture using a ''filter medium'' that has a complex structure through which only the fluid can pass. Solid particles that cannot pass through the filter medium are described as ''oversize'' and the fluid that passes through is called the ''filtrate''.Article on "Water treatment solution: Filtration", retrieved on 15 October 2013 from http://www.lenntech.com/chemistry/filtration.htm Oversize particles may form a [[filter cake]] on top of the filter and may also block the filter lattice, preventing the fluid phase from crossing the filter, known as ''blinding''. The size of the largest particles that can successfully pass through a filter is called the effective ''pore size'' of that filter. The separation of solid and fluid is imperfect; solids will be contaminated with some fluid and filtrate will contain fine particles (depending on the pore size, filter thickness and biological activity). Filtration occurs both in [[nature]] and in [[engineering|engineered]] systems; there are [[biology|biological]], [[geology|geological]], and [[Industry (manufacturing)|industrial]] forms.{{cite book |last1=Sparks |first1=Trevor |last2=Chase |first2=George |title=Filters and Filtration Handbook |date=2015 |publisher=Butterworth-Heinemann |edition=6th |isbn=9780080993966}} [8] => [9] => Filtration is also used to describe biological and physical systems that not only separate solids from a fluid stream but also remove chemical species and biological organisms by [[Entrainment (engineering)|entrainment]], [[phagocytosis]], [[adsorption]] and [[Absorption (chemistry)|absorption]]. Examples include [[slow sand filter]]s and [[trickling filter]]s. It is also used as a general term for macrophage in which organisms use a variety of means to filter small food particles from their environment. Examples range from the microscopic ''[[Vorticella]]'' up to the [[basking shark]], one of the largest fishes, and the [[baleen whale]]s, all of which are described as [[filter feeder]]s. [10] => [11] => ==Physical processes== [12] => * Filtration is used to separate particles and fluid in a suspension, where the fluid can be a liquid, a gas or a [[supercritical fluid]]. Depending on the application, either one or both of the components may be isolated. [13] => * Filtration, as a physical operation enables materials of different chemical compositions to be separated. A [[solvent]] is chosen which dissolves one component, while not dissolving the other. By dissolving the mixture in the chosen solvent, one component will go into the [[Solution (chemistry)|solution]] and pass through the filter, while the other will be retained. [14] => * Filtration is widely used in [[chemical engineering]]. It may be combined with other unit operations to process the feed stream, as in the [[biofilter]], which is a combined filter and biological digestion device. [15] => * Filtration differs from sieving, where separation occurs at a single perforated layer (a [[sieve]]). In sieving, particles that are too big to pass through the holes of the sieve are retained (see [[particle size distribution]]). In filtration, a multilayer lattice retains those particles that are unable to follow the tortuous channels of the filter. Oversize particles may form a [[Filter cake|cake]] layer on top of the filter and may also block the filter lattice, preventing the fluid phase from crossing the filter (blinding). Commercially, the term filter is applied to [[membrane]]s where the separation lattice is so thin that the surface becomes the main zone of particle separation, even though these products might be described as sieves. [16] => * Filtration differs from [[adsorption]], where separation relies on [[surface charge]]. Some adsorption devices containing [[Activated carbon|activated charcoal]] and [[ion-exchange resin]] are commercially called filters, although filtration is not their principal mechanical function. [17] => * Filtration differs from removal of [[magnetic]] contaminants from fluids with [[Magnet#Common uses of magnets|magnets]] (typically [[lubrication]] oil, coolants and [[fuel oils]]) because there is no filter medium. Commercial devices called "magnetic filters" are sold, but the name reflects their use, not their mode of operation. [18] => * In biological filters, oversize particulates are trapped and ingested and the resulting metabolites may be released. For example, in [[animal]]s (including [[human]]s), [[renal physiology#Filtration|renal filtration]] removes [[metabolic waste|waste]] from the [[blood]], and in [[water treatment]] and [[sewage treatment]], undesirable constituents are removed by adsorption into a biological film grown on or in the filter medium, as in [[slow sand filter|slow sand filtration]]. [19] => [20] => ===Methods=== [21] => There are many different methods of filtration; all aim to attain the [[separation of mixtures|separation]] of substances. Separation is achieved by some form of interaction between the substance or objects to be removed and the filter. The substance that is to pass through the filter must be a [[fluid]], i.e. a [[liquid]] or [[gas]]. Methods of filtration vary depending on the location of the targeted material, i.e. whether it is dissolved in the fluid phase or suspended as a solid. [22] => [23] => [[File: Hot Filtration set up.jpg|thumb|Hot filtration, solution contained in the Erlenmeyer flask is heated on a hot plate to prevent re-crystallization of solids in the flask itself]] [24] => There are several laboratory filtration techniques depending on the desired outcome namely, hot, cold and [[Suction filtration|vacuum filtration]]. Some of the major purposes of obtaining the desired outcome are, for the removal of impurities from a mixture or, for the isolation of solids from a mixture. [25] => [[File: Hot FIltration.jpg|thumb|left|Hot filtration for the separation of solids from a hot solution]] [26] => '''Hot filtration''' method is mainly used to separate solids from a hot solution. This is done to prevent crystal formation in the filter funnel and other apparatus that come in contact with the solution. As a result, the apparatus and the solution used are heated to prevent the rapid decrease in temperature which in turn, would lead to the crystallisation of the solids in the funnel and hinder the filtration process.{{cite web|title=Filtration Methods|url=http://www.chem.ucalgary.ca/courses/351/laboratory/filtration.pdf|publisher=University of Calgary|access-date=4 June 2015|website=[[University of Calgary]]|archive-date=13 February 2015|archive-url=https://web.archive.org/web/20150213060129/http://www.chem.ucalgary.ca/courses/351/laboratory/filtration.pdf|url-status=dead}} [27] => One of the most important measures to prevent the formation of crystals in the funnel and to undergo effective hot filtration is the use stemless filter funnel. Due to the absence of a stem in the filter funnel, there is a decrease in the surface area of contact between the solution and the stem of the filter funnel, hence preventing re-crystallization of solid in the funnel, and adversely affecting the filtration process. [28] => [29] => [[File: Cold Filtration.jpg|thumb|Cold filtration, the ice bath is used to cool down the temperature of the solution before undergoing the filtration process]] [30] => '''Cold filtration''' method is the use of an ice bath to rapidly cool the solution to be crystallized rather than leaving it to cool slowly in the room atmosphere. This technique results in the formation of very small crystals as opposed to getting large crystals by cooling the solution at room temperature. [31] => [32] => '''[[Suction filtration|Vacuum filtration]]''' technique is mostly preferred for small batches of solution to dry small crystals quickly. This method requires a [[Büchner funnel]], filter paper of a smaller diameter than the funnel, [[Büchner flask]], and rubber tubing to connect to a vacuum source. [33] => [34] => '''Centrifugal filtration''' is carried out by rapidly rotating the substance to be filtered. The more dense material is separated from the less dense matter by the horizontal rotation.{{cite web |title=Filtration - Definition, Types, Functions & Quiz |url=https://biologydictionary.net/filtration/ |website=Biology Dictionary |date=3 March 2017}} [35] => [36] => '''Gravity filtration''' is the process of pouring the mixture from a higher location to a lower one. It is frequently accomplished via simple filtration, which involves placing filter paper in a glass funnel with the liquid passing through by gravity while the insoluble solid particles are caught by the filter paper. Filter cones, fluted filters, or filtering pipets can all be employed, depending on the amount of the substance at hand.{{cite web |title=Filtration - Definition, Types, Functions & Quiz |url=https://biologydictionary.net/filtration/ |website=Biology Dictionary |date=3 March 2017}} [37] => [38] => ===Filtering force=== [39] => Only when a driving force is supplied will the fluid to be filtered be able to flow through the filter media. [[Gravity]], centrifugation, applying pressure to the fluid above the filter, applying a vacuum below the filter, or a combination of these factors may all contribute to this force. In both straightforward laboratory filtrations and massive sand-bed filters, gravitational force alone may be utilized. Centrifuges with a bowl holding a porous filter media can be thought of as filters in which a centrifugal force several times stronger than gravity replaces gravitational force. A partial vacuum is typically provided to the container below the filter media when laboratory filtration is challenging to speed up the filtering process. Depending on the type of filter being used, the majority of industrial filtration operations employ pressure or [[vacuum]] to speed up filtering and reduce the amount of equipment needed.{{cite web |title=filtration {{!}} Definition, Examples, & Processes {{!}} Britannica |url=https://www.britannica.com/science/filtration-chemistry |website=www.britannica.com |language=en}} [40] => [41] => ===Filter media=== [42] => {{Unreferenced section|date=July 2020}} [43] => Filter media are the materials used to do the separation of materials. [44] => [45] => Two main types of filter media are employed in laboratories: ''surface filters'', which are solid sieves that trap the solid particles, with or without the aid of [[filter paper]] (e.g. [[Büchner funnel]], [[belt filter]], [[rotary vacuum-drum filter]], [[cross-flow filtration|cross-flow filters]], [[screen filter]]), and ''[[depth filter]]s'', a bed of granular material which retains the solid particles as they pass (e.g. [[sand filter]]). The surface filter type allows the solid particles, i.e. the residue, to be collected intact; the depth filter does not permit this. However, the depth filter is less prone to clogging due to the greater surface area where the particles can be trapped. Also, when the solid particles are very fine, it is often cheaper and easier to discard the contaminated granules than to clean the solid sieve.{{Citation |title=Chapter 10 - Liquid Filtration |date=2019-01-01 |url=https://www.sciencedirect.com/science/article/pii/B9780081010983000111 |work=Coulson and Richardson's Chemical Engineering (Sixth Edition) |pages=555–625 |editor-last=Chhabra |editor-first=Raj |publisher=Butterworth-Heinemann |doi=10.1016/B978-0-08-101098-3.00011-1 |language=en |isbn=978-0-08-101098-3 |s2cid=239117840 |access-date=2022-10-13 |editor2-last=Basavaraj |editor2-first=Madivala G.}} [46] => [47] => Filter media can be cleaned by rinsing with solvents or detergents or backwashing. Alternatively, in engineering applications, such as [[swimming pool]] water treatment plants, they may be cleaned by [[Backwashing (water treatment)|backwashing]]. Self-cleaning [[screen filter]]s utilize point-of-suction backwashing to clean the screen without interrupting system flow.{{clarify|point of suction backwashing|date=May 2021}} [48] => [49] => ====Achieving flow through the filter==== [50] => Fluids flow through a filter due to a pressure difference—fluid flows from the high-pressure side to the low-pressure side of the filter. The simplest method to achieve this is by gravity which can be seen in the [[coffee filter|coffeemaker]] example. In the laboratory, pressure in the form of compressed air on the feed side (or vacuum on the filtrate side) may be applied to make the filtration process faster, though this may lead to clogging or the passage of fine particles. Alternatively, the liquid may flow through the filter by the force exerted by a [[pump]], a method commonly used in industry when a reduced filtration time is important. In this case, the filter need not be mounted vertically. [51] => [52] => ===Filter aid=== [53] => Certain filter aids may be used to aid filtration. These are often incompressible [[diatomaceous earth]], or kieselguhr, which is composed primarily of [[silica]]. Also used are wood [[cellulose]] and other inert porous solids such as the cheaper and safer [[perlite]]. [[Activated carbon]] is often used in industrial applications that require changes in the filtrate's properties, such as altering colour or odour. [54] => [55] => These filter aids can be used in two different ways. They can be used as a precoat before the [[slurry]] is filtered. This will prevent gelatinous-type solids from plugging the filter medium and also give a clearer filtrate. They can also be added to the slurry before filtration. This increases the [[porosity]] of the [[Filter cake|cake]] and reduces the resistance of the cake during filtration. In a rotary filter, the filter aid may be applied as a precoat; subsequently, thin slices of this layer are sliced off with the cake. [56] => [57] => The use of filter aids is usually limited to cases where the cake is discarded or where the [[precipitate]] can be chemically separated from the filter. [58] => [59] => ===Alternatives=== [60] => Filtration is a more efficient method for the [[separation of mixtures]] than [[decantation]] but is much more time-consuming. If very small amounts of solution are involved, most of the solution may be soaked up by the filter medium. [61] => [62] => An alternative to filtration is [[centrifugation]]. Instead of filtering the mixture of solid and liquid particles, the mixture is centrifuged to force the (usually) denser solid to the bottom, where it often forms a firm [[Filter cake|cake]]. The liquid above can then be decanted. This method is especially useful for separating solids that do not filter well, such as gelatinous or fine particles. These solids can clog or pass through the filter, respectively. [63] => [64] => ==Biological filtration== [65] => Biological filtration may take place inside an organism, or the biological component may be grown on a medium in the material being filtered. Removal of solids, emulsified components, organic chemicals and ions may be achieved by ingestion and digestion, adsorption or absorption. Because of the complexity of biological interactions, especially in multi-organism communities, it is often not possible to determine which processes are achieving the filtration result. At the molecular level, it may often be by individual catalytic enzyme actions within an individual organism. The waste products of some organisms may subsequently broken down by other organisms to extract as much energy as possible and in so doing reduce complex organic molecules to very simple inorganic species such as water, carbon dioxide and nitrogen. [66] => [67] => ===Excretion=== [68] => {{main|Excretion}} [69] => [70] => Inside mammals reptiles and birds, the [[kidney]]s function by [[renal filtration]] in which the [[Glomerulus (kidney)|glomerulus]] selectively removes undesirable constituents such as [[urea]], followed by selective reabsorption of many substances essential for the body to maintain homeostasis. The complete process is termed [[excretion]]. [71] => Similar but often less complex solutions are deployed in all animals even the [[protozoa]] where the [[contractile vacuole]] provides a similar function. [72] => [73] => ===Biofilms=== [74] => {{main|Biofilm}} [75] => Biofilms are often complex communities of bacteria, phages, yeasts and often more complex organisms including [[protozoa]], [[rotifer]]s and [[annelid]]s which form dynamic and complex, frequently gelatinous films on wet substrates. Such biofilms coat the rocks of most rivers and the sea and they provide the key filtration capability of the [[Schmutzdecke]] on the surface of [[slow sand filter]]s and the film on the filter media of [[trickling filter]]s which are used to create potable water and treat sewage respectively. [76] => [77] => An example of a biofilm is a biological slime, which may be found in lakes, rivers, rocks, etc. The utilization of single- or dual-species biofilms is a novel technology since natural biofilms are sluggishly developing. The use of biofilms in the biofiltration process allows for the attachment of desirable biomass and critical nutrients to immobilized support. So that water may be reused for various processes, advances in [[biofiltration]] methods assist in removing significant volumes of effluents from the [[wastewater]].{{cite journal |last1=Dave |first1=Sushma |last2=Churi |first2=Hardik |last3=Litoria |first3=Pratiksha |last4=David |first4=Preethi |last5=Das |first5=Jayashankar |title=Chapter 3 - Biofilms, filtration, microbial kinetics and mechanism of degradation: a revolutionary approach |journal=Membrane-Based Hybrid Processes for Wastewater Treatment |date=1 January 2021 |pages=25–43 |doi=10.1016/b978-0-12-823804-2.00018-5 |url=https://doi.org/10.1016/B978-0-12-823804-2.00018-5 |publisher=Elsevier |isbn=9780128238042 |s2cid=237996887 |language=en}} [78] => [79] => Systems for biologically treating wastewater are crucial for enhancing both human health and [[water quality]]. Biofilm technology, the formation of biofilms on various filter media, and other factors have an impact on the growth structure and function of these biofilms. To conduct a thorough investigation of the composition, diversity, and dynamics of biofilms, it also takes on a variety of traditional and contemporary molecular approaches.{{cite journal |last1=Sehar |first1=Shama |last2=Naz |first2=Iffat |title=Role of the Biofilms in Wastewater Treatment |journal=Microbial Biofilms - Importance and Applications |date=13 July 2016 |doi=10.5772/63499|isbn=978-953-51-2435-1 |s2cid=5035829 |doi-access=free }} [80] => [81] => ===Filter feeders=== [82] => {{main|Filter feeders}} [83] => Filter feeders are organisms that obtain their food by filtering their, generally aquatic, environment. Many of the protozoa are filter feeders using a range of adaptations including rigid spikes of [[protoplasm]] held in the water flow as in the [[suctoria]] to various arrangements of beating [[Cilium|cillia]] to direct particles to the mouth including organisms such as ''Vorticella'' which have a complex ring of cilia which create a vortex in the flow drafting particles into the oral cavity. Similar feeding techniques are used by the [[Rotifera]] and the [[Ectoprocta]]. Many aquatic [[arthropods]] are filter feeders. Some use rhythmical beating of abdominal limbs to create a water current to the mouth whilst the hairs on the legs trap any particle. Others such as some [[Caddisfly#Ecology|caddis flies]] spin fine webs in the water flow to trap particles. [84] => [85] => ==Applications and examples== [86] => [[File:FilterFunnelApparatus.png|right|thumb|Filter flask (suction flask, with sintered glass filter containing sample). Note the almost colourless filtrate in the receiver flask.]] [87] => Many filtration processes include more than one filtration mechanism, and particulates are often removed from the fluid first to prevent clogging of downstream elements. [88] => [89] => Particulate filtration includes: [90] => * The [[coffee filter]] to separate the coffee infusion from the grounds. [91] => * [[HEPA]] filters in [[air conditioning]] to remove particles from air. [92] => * [[Belt filter]]s to extract [[precious metal]]s in [[mining]]. [93] => * Vertical plate filter such as those used in [[Merrill–Crowe process]].{{clarify|date=May 2021}} [94] => * [[Nutsche filter]] is typically used in pharmaceutical applications or batch processes that need to capture solids. [95] => * Furnaces use filtration to prevent the furnace elements from fouling with particulates.{{clarify|date=May 2021}} [96] => * [[Pneumatic conveying system]] often employs filtration to stop or slow the flow of material that is transported, through the use of a [[dust collector|baghouse]]. [97] => * In the laboratory, a [[Büchner funnel]] is often used, with a [[filter paper]] serving as the porous barrier. [98] => * Air filters are commonly used to remove airborne particulate matter in building ventilation systems, combustion engines, and industrial processes.{{clarify|date=May 2021}} [99] => * [[Oil filter]] in automobiles, often as a canister or cartridge. [100] => * [[Filter (aquarium)|Aquarium filter]] [101] => [102] => Adsorption filtration removes contaminants by [[adsorption]] of the contaminant by the filter medium. This requires intimate contact between the filter medium and the filtrate, and takes time for diffusion to bring the contaminant into direct contact with the medium while passing through it, referred to as ''{{visible anchor|dwell time}}''. Slower flow also reduces pressure drop across the filter. Applications include: [103] => * [[Carbon dioxide]] removal from [[breathing gas]] in [[rebreather]]s and [[life-support system]]s using [[Carbon dioxide scrubber|scrubber filters]], [104] => * [[Activated carbon]] filters to remove volatile hydrocarbons, odours, and other contaminants from recirculated breathing gas in closed habitats. [105] => [106] => Combined applications include: [107] => [[File: Small stationary Bauer HP compressor installation DSC09403.JPG|thumb|Small stationary Bauer HP breathing air compressor installation showing water separator (centre), and two high-pressure product filter housings (gold anodised) to produce oxygen compatible breathing air for diving gas mixtures.]] [108] => * [[Diving air compressor|Compressed breathing air]] production, where the air passes through a particulate filter before entering the compressor, which removes particles likely to damage the compressor, followed by [[vapour–liquid separator|droplet separation]] after post-compression cooling and final product adsorption filtration to remove gaseous hydrocarbons contaminants and excessive water vapour. In some cases prefilters using adsorption media are used to control carbon dioxide levels, [[pressure swing adsorption]] may be used to increase [[oxygen fraction]], and where the risk of [[carbon monoxide]] contamination exists, [[hopcalite]] [[catalytic converter]]s may be included in the filtration media of the product. All these processes are broadly referred to as aspects of the filtration of the product. [109] => * [[Potable water]] treatment using biofilm filtration in slow sand filters. [110] => * [[Wastewater treatment]] using biofilm filtration using trickling filters. [111] => [112] => {{expand section|more examples and clarification|date=May 2021}} [113] => [114] => ==See also== [115] => {{Portal|Chemistry |Beer|Biology|Technology}} [116] => * {{annotated link|Separation process}} [117] => * {{annotated link|Microfiltration}} [118] => * {{annotated link|Ultrafiltration}} [119] => * {{annotated link|Nanofiltration}} [120] => * {{annotated link|Reverse osmosis}} [121] => * {{annotated link|Cross-flow filtration}} [122] => * {{annotated link|Sieve}} [123] => * {{annotated link|Sieve analysis}} [124] => * {{annotated link|Wikipedia:Edit filter}} [125] => [126] => ==References== [127] => {{Reflist}} [128] => [129] => ==External links== [130] => {{Wiktionary|filtration}} [131] => {{Commons category|Filtration}} [132] => * [http://www.particles.org.uk/filtration/index.htm Filtration modeling] (constant rate and pressure) [133] => [134] => {{Alchemy}} [135] => {{Biotechnology}} [136] => {{Renal physiology}} [137] => {{Separation processes}} [138] => {{Wastewater}} [139] => {{Analytical chemistry}} [140] => {{Authority control}} [141] => [142] => [[Category:Filtration| ]] [143] => [[Category:Analytical chemistry]] [144] => [[Category:Laboratory techniques]] [145] => [[Category:Alchemical processes]] [146] => [[Category:Industrial water treatment]] [] => )
good wiki

Filtration

Filtration is a process used to separate solids or fluids from a mixture by passing it through a porous medium that retains the solid particles while allowing the fluid to pass through. This technique is widely used in various industries, including water treatment, air purification, and chemical processing.

More about us

About

This technique is widely used in various industries, including water treatment, air purification, and chemical processing. The Wikipedia page on filtration provides detailed information on the different types of filtration methods, such as gravity, vacuum, and pressure filtration, and their applications in different fields. It also covers the principle behind filtration, the different types of filters, and the factors that affect filtration efficiency. Additionally, the page discusses the history of filtration, its environmental impact, and the advancements made in filtration technology. Overall, the Wikipedia page on filtration serves as a comprehensive resource for anyone seeking to understand the principles, methods, and applications of this essential process.

Expert Team

Vivamus eget neque lacus. Pellentesque egauris ex.

Award winning agency

Lorem ipsum, dolor sit amet consectetur elitorceat .

10 Year Exp.

Pellen tesque eget, mauris lorem iupsum neque lacus.

You might be interested in