Array ( [0] => {{short description|Facilities and systems serving society}} [1] => {{See also|Hard infrastructure|Soft infrastructure}} [2] => {{for|the mathematical concept|Infrastructure (number theory)}} [3] => [[File:Ferry Building at night.jpg|thumb|upright=1.35|[[San Francisco Ferry Building]], [[Embarcadero (San Francisco)|The Embarcadero]], and the [[San Francisco-Oakland Bay Bridge|Bay Bridge]] at night, all examples of infrastructure]] [4] => {{Public Infrastructure}} [5] => '''Infrastructure''' is the set of facilities and systems that serve a country, city, or other area,[http://dictionary.reference.com/browse/infrastructure Infrastructure | Define Infrastructure at Dictionary.com] {{Webarchive|url=https://web.archive.org/web/20160305150655/http://dictionary.reference.com/browse/infrastructure |date=2016-03-05 }} and encompasses the services and facilities necessary for its economy, households and firms to function.{{cite book | last1 = O'Sullivan | first1 = Arthur | author-link = Arthur O'Sullivan (economist) | first2=Steven M. | last2=Sheffrin | author-link2 = Steven M. Sheffrin | title = Economics: Principles in Action | url = https://archive.org/details/economicsprincip00osul | url-access = limited | publisher = Pearson Prentice Hall | year = 2003 | location = Upper Saddle River, NJ| page = [https://archive.org/details/economicsprincip00osul/page/n490 474] | isbn = 978-0-13-063085-8}} Infrastructure is composed of public and private physical structures such as [[road]]s, [[railways]], [[bridge]]s, [[tunnel]]s, [[water supply]], [[sewerage|sewers]], [[electrical grid]]s, and [[telecommunications]] (including [[Internet access|Internet connectivity]] and [[Broadband|broadband access]]). In general, infrastructure has been defined as "the physical components of interrelated systems providing [[Commodity|commodities]] and services essential to enable, sustain, or enhance societal [[quality of life|living conditions]]" and maintain the surrounding environment.{{cite journal|last=Fulmer|first=Jeffrey|title=What in the world is infrastructure?|journal=PEI Infrastructure Investor|year=2009|issue=July/August|pages=30–32}} [6] => [7] => Especially in light of the massive societal transformations needed to [[Climate change mitigation|mitigate]] and [[Climate change adaptation|adapt to]] climate change, contemporary infrastructure conversations frequently focus on [[sustainable development]] and [[green infrastructure]]. Acknowledging this importance, the international community has created policy focused on sustainable infrastructure through the [[Sustainable Development Goals]], especially [[Sustainable Development Goal 9]] "[[Industry, Innovation and Infrastructure]]". [8] => [9] => One way to describe different types of infrastructure is to classify them as two distinct kinds: [[hard infrastructure]] and [[soft infrastructure]].{{cite journal |last1=Dyer |first1=Mark |last2=Dyer |first2=Rachel |last3=Weng |first3=Min-Hsien |last4=Wu |first4=Shaoqun |last5=Grey |first5=Thomas |last6=Gleeson |first6=Richard |last7=Ferrari |first7=Tomás García |title=Framework for soft and hard city infrastructures |journal=Proceedings of the Institution of Civil Engineers - Urban Design and Planning |date=December 2019 |volume=172 |issue=6 |pages=219–227 |doi=10.1680/jurdp.19.00021 |s2cid=209056612 |doi-access=free |hdl=10289/15706 |hdl-access=free }} Hard infrastructure is the physical networks necessary for the functioning of a modern industrial society or [[Industry (economics)|industry]].{{Cite web|url=https://www.laohamutuk.org/econ/14TLDPM/InfraCSOen.pdf|title=Civil Society Comments on Infrastructure Strategic Sector|last=Hamutak|first=Luta}} This includes roads, bridges, and railways. Soft infrastructure is all the institutions that maintain the [[Standard of living|economic]], [[public health|health]], [[social security|social]], [[Natural environment|environmental]], and [[culture|cultural standard]]s of a country. This includes [[educational program]]s, [[official statistics]], parks and [[recreation]]al facilities, [[law enforcement]] agencies, and [[emergency services]]. [10] => [11] => == Etymology == [12] => The word "infrastructure" has been used in French since 1875 and in English since 1887, originally meaning "installations that form the basis for any operation or system".Online Etymology Dictionary. Douglas Harper, Historian. http://dictionary.reference.com/browse/infrastructure {{Webarchive|url=https://web.archive.org/web/20160305150655/http://dictionary.reference.com/browse/infrastructure |date=2016-03-05 }} (accessed: April 24, 2008){{cite web|url=http://www.opendb.net/element/19099.php|title=Soft Infrastructure – Definition|archive-url=https://web.archive.org/web/20110723233028/http://www.opendb.net/element/19099.php|archive-date=2011-07-23|url-status=dead|access-date=2015-03-21}} It is a [[loanword]] from French, where it was already used for establishing a roadbed of substrate material, required before railroad tracks or constructed pavement could be laid on top of it. The word is a combination of the [[Latin]] prefix "infra", meaning "below", as many of these constructions are underground (for example, tunnels, water and gas systems, and railways), and the French word "structure" (derived from the Latin word "structure"). The army use of the term achieved currency in the United States after the formation of [[NATO]] in the 1940s, and by 1970 was adopted by [[Urban planning|urban planners]] in its modern civilian sense.{{citation needed|date=January 2023}} [13] => [14] => ==Classifications== [15] => A 1987 [[National Academies of Sciences, Engineering, and Medicine|US National Research Council]] panel adopted the term "[[public works]] infrastructure", referring to: [16] =>
[17] => "... both specific functional modes – highways, streets, roads, and bridges; [[mass transit]]; airports and airways; [[water supply]] and [[water resources]]; [[wastewater management]]; [[solid-waste]] treatment and disposal; electric [[power generation]] and transmission; telecommunications; and [[Hazardous waste|hazardous waste management]] – and the combined system these modal elements comprise. A comprehension of infrastructure spans not only these public works facilities, but also the operating procedures, management practices, and development policies that interact together with societal demand and the physical world to facilitate the transport of people and goods, provision of water for drinking and a variety of other uses, safe disposal of society's waste products, provision of energy where it is needed, and transmission of information within and between communities."{{cite book |doi=10.17226/798 |title=Infrastructure for the 21st Century |date=1987 |isbn=978-0-309-07814-6 |page=21 }} [18] =>
[19] => [20] => The [[American Society of Civil Engineers]] publishes an "Infrastructure Report Card" which represents the organizations opinion on the condition of various infrastructure every 2–4 years.[http://www.infrastructurereportcard.org/wp-content/uploads/2016/10/2017-Infrastructure-Report-Card.pdf 2017 Infrastructure Report], 112pp, American Society of Civil Engineers, 2017 {{As of |2017}} they grade 16 categories, namely aviation, bridges, dams, [[drinking water]], energy, [[hazardous waste]], [[inland waterway]]s, [[levee]]s, parks and [[recreation]], [[ports]], [[railway|rail]], [[roads]], schools, [[solid waste]], [[Public transport|transit]] and [[wastewater]].{{rp|4}} The United States has received a rating of "D+" on its infrastructure.{{cite journal |last1=Cervero |first1=Robert |title=Transport Infrastructure and the Environment in the Global South: Sustainable Mobility and Urbanism |journal=Jurnal Perencanaan Wilayah Dan Kota |date=December 2014 |volume=25 |issue=3 |pages=174–191 |doi=10.5614/jpwk.2015.25.3.1 |doi-access=free }} This aging infrastructure is a result of governmental neglect and inadequate funding. As the United States presumably looks to upgrade its existing infrastructure, sustainable measures could be a consideration of the design, build, and operation plans. [21] => [22] => === Personal === [23] => A way to embody personal infrastructure is to think of it in terms of [[human capital]].{{Cite web|url=https://mpra.ub.uni-muenchen.de/12990/1/Survey_infra_def.pdf|title=Public infrastructure: definition, classification and measurement issues|last=Torrisi|first=Gianpiero|date=January 2009}} Human capital is defined by the [[Encyclopædia Britannica]] as "intangible collective resources possessed by individuals and groups within a given population".{{Cite encyclopedia|url=https://www.britannica.com/topic/human-capital|title=Human capital {{!}} economics|encyclopedia=Encyclopedia Britannica|access-date=2018-04-25|language=en}} The goal of personal infrastructure is to determine the quality of the economic agents' values. This results in three major tasks: the task of economic proxies in the economic process (teachers, unskilled and qualified labor, etc.); the importance of personal infrastructure for an individual (short and long-term consumption of education); and the social relevance of personal infrastructure. Essentially, personal infrastructure maps the human impact on infrastructure as it is related to the economy, individual growth, and social impact. [24] => [25] => === Institutional === [26] => Institutional infrastructure branches from the term "economic constitution". According to [[Gianpiero Torrisi]], institutional infrastructure is the object of [[economic policy|economic]] and legal policy. It compromises the growth and sets norms. It refers to the degree of fair treatment of equal economic data and determines the framework within which economic agents may formulate their own economic plans and carry them out in co-operation with others. [27] => [28] => === Sustainable === [29] => Sustainable infrastructure refers to the processes of design and construction that take into consideration their environmental, economic, and social impact. Included in this section are several elements of sustainable schemes, including materials, water, energy, transportation, and waste management infrastructure. Although there are endless other factors of consideration, those will not be covered in this section. [30] => [31] => [32] => ===Material=== [33] => Material infrastructure is defined as "those immobile, non-circulating capital goods that essentially contribute to the production of infrastructure goods and services needed to satisfy basic physical and social requirements of [[economic agent]]s". There are two distinct qualities of material infrastructures: 1) fulfillment of [[social needs]] and 2) [[mass production]]. The first characteristic deals with the basic needs of human life. The second characteristic is the non-availability of infrastructure goods and services. Today, there are various materials that can be used to build infrastructure. The most prevalent ones are asphalt, concrete, steel, masonry, wood, polymers and composites.{{Cite web|title=Infrastructure Materials Engineering – Department of Civil, Architectural and Environmental Engineering|url=https://www.caee.utexas.edu/research/specialities/infrastructure|access-date=2020-11-05|website=caee.utexas.edu}} [34] => [35] => === Economic === [36] => According to the business dictionary, economic infrastructure can be defined as "internal facilities of a country that make business activity possible, such as communication, transportation and [[distribution network]]s, [[financial institution]]s and related international markets, and [[energy supply]] systems".{{Cite web|url=http://www.businessdictionary.com/definition/economic-infrastructure.html|title=What is economic infrastructure? definition and meaning|website=BusinessDictionary.com|language=en|access-date=2018-04-25|archive-date=2018-04-26|archive-url=https://web.archive.org/web/20180426075850/http://www.businessdictionary.com/definition/economic-infrastructure.html|url-status=dead}} Economic infrastructure support productive activities and events. This includes roads, highways, bridges, airports, [[cycling infrastructure]], [[water supply|water distribution]] networks, [[sewerage|sewer systems]], and [[irrigation]] plants. [37] => [38] => === Social === [39] => [[File:Lehigh-Valley-Hospital.x.jpg|thumb|upright=1.1|[[Lehigh Valley Hospital–Cedar Crest]] in [[Allentown, Pennsylvania]]]] [40] => Social infrastructure can be broadly defined as the construction and maintenance of facilities that support [[social services]].{{Cite web |last=Cohen |first=Gershon |date=20 July 2017 |url=https://www.aberdeenstandard.com/en-us/us/investor/insights-thinking-aloud/article-page/what-is-social-infrastructure |title=What is social infrastructure? |website=Aberdeen Standard Investments |language=en}} Social infrastructures are created to increase social comfort and promote economic activity. These include schools, parks and [[playground]]s, structures for [[Public security|public safety]], [[waste]] disposal plants, hospitals, and sports areas. [41] => [42] => === Core === [43] => [[File:Blick auf A 2 bei Raststätte Lehrter See (2009).jpg|thumb|upright=1.1|An ''[[Autobahn]]'' in [[Lehrte]], near [[Hanover]], Germany]] [44] => Core assets provide essential services and have monopolistic characteristics.{{Cite web|url=http://www.ncpers.org/files/Conference%20Docs/Public%20Safety/2014%20Handouts/Robert%20Pease_Tuesday.pdf|title=Infrastructure Investment Opportunities for Public Safety Plans|last=Pease|first=Bob|date=October 28, 2014|access-date=April 25, 2018|archive-date=April 20, 2021|archive-url=https://web.archive.org/web/20210420164714/https://www.ncpers.org/files/Conference%20Docs/Public%20Safety/2014%20Handouts/Robert%20Pease_Tuesday.pdf|url-status=dead}} Investors seeking core infrastructure look for five different characteristics: income, low volatility of returns, diversification, inflation protection, and long-term liability matching. Core infrastructure incorporates all the main types of infrastructure, such as roads, highways, railways, [[public transportation]], water, and [[Gasoline|gas]] supply. [45] => [46] => === Basic === [47] => Basic infrastructure refers to main railways, roads, canals, harbors and docks, the electromagnetic telegraph, drainage, dikes, and land reclamation. It consist of the more well-known and common features of infrastructure that we come across in our daily lives (buildings, roads, docks). [48] => [49] => === Complementary === [50] => Complementary infrastructure refers to things like light railways, tramways, and gas/electricity/water supply. To complement something means to bring it to perfection or complete it. Complementary infrastructure deals with the little parts of the engineering world that make life more convenient and efficient. They are needed to ensure successful usage and marketing of an already finished product, like in the case of [[road bridges]].{{Cite web|url=https://www.definitions.net/definition/complementary+assets|title=What does complementary assets mean?|website=definitions.net}} Other examples are lights on sidewalks, landscaping around buildings, and benches where pedestrians can rest. [51] => [52] => ==Applications== [53] => [54] => ===Engineering and construction=== [55] => Engineers generally limit the term "infrastructure" to describe [[fixed assets]] that are in the form of a large network; in other words, [[hard infrastructure]].{{citation needed|date=March 2017}} Efforts to devise more generic definitions of infrastructures have typically referred to the network aspects of most of the structures, and to the accumulated value of investments in the networks as assets.{{citation needed|date=March 2017}} One such definition from 1998 defined infrastructure as the network of assets "where the system as a whole is intended to be maintained indefinitely at a specified standard of service by the continuing replacement and refurbishment of its components".Association of Local Government Engineers New Zealand: "Infrastructure Asset Management Manual", June 1998. Edition 1.1 [56] => [57] => ===Civil defense and economic development=== [58] => {{see also|Civil defense by country}} [59] => [[Civil defense]] planners and [[Development economics|developmental economists]] generally refer to both hard and soft infrastructure, including [[public services]] such as schools and [[hospitals]], [[emergency services]] such as police and fire fighting, and basic services in the [[economic sector]]. The notion of [[infrastructure-based development]] combining long-term infrastructure investments by government agencies at central and regional levels with [[public private partnership]]s has proven popular among economists in Asia (notably Singapore and China), mainland Europe, and Latin America. [60] => [61] => ===Military=== [62] => Military infrastructure is the buildings and permanent installations necessary for the support of military forces, whether they are stationed in bases, being deployed or engaged in operations. Examples include barracks, headquarters, airfields, communications facilities, stores of military equipment, port installations, and maintenance stations.D.O.D. Dictionary of Military and Associated Terms, 2001 (rev. 2005) [63] => [64] => ===Communications=== [65] => Communications infrastructure is the informal and formal channels of communication, political and [[social network]]s, or beliefs held by members of particular groups, as well as information technology, software development tools. Still underlying these more conceptual uses is the idea that infrastructure provides organizing structure and support for the system or organization it serves, whether it is a city, a nation, a corporation, or a collection of people with common interests. Examples include [[IT infrastructure]], research infrastructure, terrorist infrastructure, employment infrastructure, and tourism infrastructure.{{citation needed|date=March 2017}} [66] => [67] => ==Related concepts== [68] => The term "infrastructure" may be confused with the following overlapping or related concepts. [69] => [70] => [[Land improvement]] and [[land development]] are general terms that in some contexts may include infrastructure, but in the context of a discussion of infrastructure would refer only to smaller-scale systems or works that are not included in infrastructure, because they are typically limited to a single [[Real property|parcel of land]], and are owned and operated by the landowner. For example, an irrigation canal that serves a region or district would be included with infrastructure, but the private irrigation systems on individual land parcels would be considered land improvements, not infrastructure. Service connections to municipal service and public utility networks would also be considered land improvements, not infrastructure.''Land improvement'', Online BusinessDictionary.com, http://www.businessdictionary.com/definition/land-development.html {{Webarchive|url=https://web.archive.org/web/20100526231021/http://www.businessdictionary.com/definition/land-development.html |date=2010-05-26 }} (accessed January 31, 2009)''Land development'', Online BusinessDictionary.com, http://www.businessdictionary.com/definition/land-development.html {{Webarchive|url=https://web.archive.org/web/20100526231021/http://www.businessdictionary.com/definition/land-development.html |date=2010-05-26 }} (accessed January 31, 2009) [71] => [72] => The term "[[public works]]" includes government-owned and operated infrastructure as well as public buildings, such as schools and courthouses. Public works generally refers to physical assets needed to deliver [[public services]]. Public services include both infrastructure and services generally provided by the government. [73] => [74] => ==Ownership and financing== [75] => {{Main|Infrastructure and economics}} [76] => Infrastructure may be owned and managed by governments or by privately held companies, such as sole [[public utility]] or railway companies. Generally, most roads, major airports and other ports, water distribution systems, and sewage networks are publicly owned, whereas most energy and [[telecommunications network]]s are privately owned.{{citation needed|date=March 2017}} Publicly owned infrastructure may be paid for from taxes, tolls, or metered user fees, whereas private infrastructure is generally paid for by metered user fees.{{cite web|title=Business models for transport infrastructure assets? Some experiences in Europe. In The decision-making process for infrastructural investment choices|date=2020|url=https://www.francoangeli.it/Ricerca/scheda_libro.aspx?Id=26150|publisher=FrancoAngeli}}{{cite journal |last1=Chivatá Cárdenas |first1=Ibsen |last2=Voordijk |first2=Hans |last3=Dewulf |first3=Geert |title=Beyond project governance. Enhancing funding and enabling financing for infrastructure in transport. Findings from the importance analysis approach |journal=European Journal of Transport and Infrastructure Research |date=2018 |volume=18 |issue=4 |doi=10.18757/ejtir.2018.18.4.3261 |doi-access=free }} Major investment projects are generally financed by the issuance of long-term [[Bond (finance)|bonds]].{{citation needed|date=March 2017}} [77] => [78] => Government-owned and operated infrastructure may be developed and operated in the [[private sector]] or in [[public-private partnership]]s, in addition to in the [[public sector]]. {{as of|2008}} in the United States for example, public spending on infrastructure has varied between 2.3% and 3.6% of GDP since 1950.{{cite news |last1=Leonhardt |first1=David |title=Piling Up Monuments Of Waste |newspaper=The New York Times |date=19 November 2008 |page=B1 |id={{ProQuest|897784170}} |url=https://www.nytimes.com/2008/11/19/business/economy/19leonhardt.html }} Many financial institutions invest in infrastructure. [79] => [80] => ==In the developing world== [81] => According to researchers at the [[Overseas Development Institute]], the lack of infrastructure in many [[developing countries]] represents one of the most significant limitations to economic growth and achievement of the [[Millennium Development Goals|Millennium Development Goals (MDGs)]]. Infrastructure investments and maintenance can be very expensive, especially in such areas as landlocked, rural and sparsely populated countries in Africa. It has been argued that infrastructure investments contributed to more than half of Africa's improved growth performance between 1990 and 2005, and increased investment is necessary to maintain growth and tackle poverty. The returns to investment in infrastructure are very significant, with on average thirty to forty percent returns for telecommunications ([[Information and communications technology|ICT]]) investments, over forty percent for electricity generation, and eighty percent for [[roads]].Christian K.M. Kingombe 2011. [https://www.odi.org/sites/odi.org.uk/files/odi-assets/publications-opinion-files/6311.pdf Mapping the new infrastructure financing landscape] {{Webarchive|url=https://web.archive.org/web/20190411215934/https://www.odi.org/sites/odi.org.uk/files/odi-assets/publications-opinion-files/6311.pdf |date=2019-04-11 }}. London: [[Overseas Development Institute]] [82] => [83] => ===Regional differences=== [84] => The demand for infrastructure both by consumers and by companies is much higher than the amount invested. There are severe constraints on the supply side of the provision of infrastructure in Asia.Peter McCawley (2010), '[http://apel.anu.edu.au/pdf/24-1/Articles/mccawley.pdf Infrastructure Policy in Developing countries'] {{Webarchive|url=https://web.archive.org/web/20151017001815/http://apel.anu.edu.au/pdf/24-1/Articles/mccawley.pdf |date=2015-10-17}}, ''Asian-Pacific Economic Literature'', 24(1), May. See also Asian-Pacific Economic Literature Policy Brief No 19, May 2010, on '[https://www.webcitation.org/64MYnL7A1?url=http://apel.anu.edu.au/pdf/24-1/Policy/mccawley.pdf Infrastructure policy in developing countries in Asia']. The infrastructure financing gap between what is invested in Asia-Pacific (around US$48 billion) and what is needed (US$228 billion) is around US$180 billion every year. [85] => [86] => In Latin America, three percent of GDP (around US$71 billion) would need to be invested in infrastructure in order to satisfy demand, yet in 2005, for example, only around two percent was invested leaving a financing gap of approximately US$24 billion. [87] => [88] => In Africa, in order to reach the seven percent annual growth calculated to be required to meet the [[Millennium Development Goals|MDGs]] by 2015 would require infrastructure investments of about fifteen percent of GDP, or around US$93 billion a year. In [[fragile state]]s, over thirty-seven percent of GDP would be required. [89] => [90] => ===Sources of funding for infrastructure=== [91] => The source of financing for infrastructure varies significantly across sectors. Some sectors are dominated by [[government spending]], others by [[development aid|overseas development aid (ODA)]], and yet others by [[private sector|private]] investors. In California, infrastructure financing districts are established by local governments to pay for physical facilities and services within a specified area by using property tax increases.{{Cite book|title=California Land Use and Planning Law|last1=Barclay|first1=Cecily|last2=Gray|first2=Matthew|publisher=Solano Press|year=2016|isbn=978-1-938166-11-2|edition=35|location=California|pages=585}} In order to facilitate investment of the private sector in developing countries' infrastructure markets, it is necessary to design risk-allocation mechanisms more carefully, given the higher risks of their markets.{{Cite book |last=Koh |first=Jae-myong |title=Green Infrastructure Financing : Institutional Investors, PPPs and Bankable Projects |date=2018 |isbn=978-3-319-71770-8 |location=Cham, Switzerland |oclc=1023427026}} [92] => [93] => The spending money that comes from the government is less than it used to be. From the 1930s to 2019, the United States went from spending 4.2% of GDP to 2.5% of GDP on infrastructure.{{Cite web|title=COVID-19 Status Report|url=https://www.infrastructurereportcard.org/covid-status-report/|access-date=2020-11-05|website=ASCE's 2017 Infrastructure Report Card|date=23 June 2020 |language=en}} These under investments have accrued, in fact, according to the 2017 ASCE Infrastructure Report Card, from 2016 to 2025, infrastructure will be underinvested by $2 trillion. Compared to the global GDP percentages, The United States is tied for second-to-last place, with an average percentage of 2.4%. This means that the government spends less money on repairing old infrastructure and or on infrastructure as a whole.{{Cite news|url=https://www.economist.com/leaders/2018/10/20/large-economic-gains-can-come-from-mundane-improvements-in-policy|title=Large economic gains can come from mundane improvements in policy|newspaper=The Economist|access-date=2018-10-25|language=en}} [94] => [95] => In [[Sub-Saharan Africa]], governments spend around US$9.4 billion out of a total of US$24.9 billion. In [[irrigation]], governments represent almost all spending. In transport and energy a majority of investment is government spending. In [[Information and communication technologies|ICT]] and [[water supply]] and [[sanitation]], the private sector represents the majority of capital expenditure. Overall, between them aid, the private sector, and non-[[OECD]] financiers exceed government spending. The private sector spending alone equals state capital expenditure, though the majority is focused on ICT infrastructure investments. External financing increased in the 2000s (decade) and in Africa alone external infrastructure investments increased from US$7 billion in 2002 to US$27 billion in 2009. China, in particular, has emerged as an important investor. [96] => [97] => == Coronavirus implications == [98] => The 2020 COVID-19 pandemic has only exacerbated the underfunding of infrastructure globally that has been accumulating for decades. The pandemic has increased unemployment and has widely disrupted the economy. This has serious impacts on households, businesses, and federal, state and local governments. This is especially detrimental to infrastructure because it is so dependent on funding from government agencies{{snd}}with state and local governments accounting for approximately 75% of spending on public infrastructure in the United States.{{Cite web|date=2016-02-22|title=It's Time for States to Invest in Infrastructure|url=https://www.cbpp.org/research/state-budget-and-tax/its-time-for-states-to-invest-in-infrastructure|access-date=2020-11-05|website=Center on Budget and Policy Priorities|language=en}} [99] => [100] => Governments are facing enormous decreases in revenue, economic downturns, overworked health systems, and hesitant workforces, resulting in huge budget deficits across the board. However, they must also scale up public investment to ensure successful reopening, boost growth and employment, and green their economies.{{cite book |last1=Allen |first1=Mr Richard I. |last2=Allen |first2=Richard |last3=Tandberg |first3=Eivind |title=How to Manage Public Investment During a Postcrisis Recovery |date=2021 |publisher=International Monetary Fund |isbn=978-1-5135-8441-6 }}{{pn|date=April 2024}} The unusually large scale of the packages needed for COVID-19 was accompanied by widespread calls for "greening" them to meet the dual goals of economic recovery and [[environmental sustainability]].{{cite report |type=Preprint |last1=Funke |first1=Katja |last2=Huang |first2=Guohua |last3=Eltokhy |first3=Khaled |last4=Kim |first4=Yujin |last5=Zinabou |first5=Genet |title=Monitoring the Climate Impact of Fiscal Policy - Lessons from Tracking the Covid-19 Response |date=2021 |ssrn=4026488 }} However, as of March 2021, only a small fraction of the G20 COVID-19 related fiscal measures was found to be climate friendly. [101] => [102] => == Sustainable infrastructure == [103] => {{Main|Sustainable infrastructure}} [104] => Although it is readily apparent that much effort is needed to repair the economic damage inflicted by the Coronavirus epidemic, an immediate return to business as usual could be environmentally harmful, as shown by the 2007-08 financial crisis in the United States. While the ensuing economic slowdown reduced global greenhouse gas emissions in 2009, emissions reached a record high in 2010, partially due to governments' implemented economic stimulus measures with minimal consideration of the environmental consequences.{{Cite web|title=How a post-pandemic stimulus can both create jobs and help the climate|url=https://www.mckinsey.com/business-functions/sustainability/our-insights/how-a-post-pandemic-stimulus-can-both-create-jobs-and-help-the-climate|access-date=2020-11-05|website=McKinsey}} The concern is whether this same pattern will repeat itself. The post-COVID-19 period could determine whether the world meets or misses the emissions goals of the 2015 Paris Agreement and limits global warming to 1.5 degrees C to 2 degrees C.{{Cite web|url=https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement|title=The Paris Agreement – UNFCCC|access-date=2022-05-23|website=unfccc.int}} [105] => [106] => As a result of the COVID-19 epidemic, a host of factors could jeopardize a low-carbon recovery plan: this includes reduced attention on the global political stage (2020 UN Climate Summit has been postponed to 2021), the relaxing of environmental regulations in pursuit of economic growth, decreased oil prices preventing low-carbon technologies from being competitive, and finally, stimulus programs that take away funds that could have been used to further the process of [[low-carbon economy|decarbonization]]. Research suggests that a recovery plan based on lower-carbon emissions could not only make significant emissions reductions needed to battle climate change, but also create more economic growth and jobs than a high-carbon recovery plan would. A study published in the Oxford Review of Economic Policy, more than 200 economists and economic officials reported that "green" economic-recovery initiatives performed at least as well as less "green" initiatives.{{cite journal |last1=Hepburn |first1=Cameron |last2=O’Callaghan |first2=Brian |last3=Stern |first3=Nicholas |last4=Stiglitz |first4=Joseph |last5=Zenghelis |first5=Dimitri |title=Will COVID-19 fiscal recovery packages accelerate or retard progress on climate change? |journal=Oxford Review of Economic Policy |date=28 September 2020 |volume=36 |issue=Supplement_1 |pages=S359–S381 |doi=10.1093/oxrep/graa015 |pmc=7239121 |s2cid=218942009 |doi-access=free }} There have also been calls for an independent body could provide a comparable assessment of countries' fiscal policies, promoting transparency and accountability at the international level. [107] => [108] => In addition, in an econometric study published in the Economic Modelling journal, an analysis on government energy technology spending showed that spending on the [[renewable energy]] sector created five more jobs per million dollars invested than spending on [[fossil fuels]].{{cite journal |last1=Garrett-Peltier |first1=Heidi |title=Green versus brown: Comparing the employment impacts of energy efficiency, renewable energy, and fossil fuels using an input-output model |journal=Economic Modelling |date=February 2017 |volume=61 |pages=439–447 |doi=10.1016/j.econmod.2016.11.012 }} Since sustainable infrastructure is more beneficial in both an economic and environmental context, it represents the future of infrastructure. Especially with increasing pressure from climate change and diminishing natural resources, infrastructure not only needs to maintain economic development and job development, and a high quality of life for residents, but also protect the environment and its natural resources. [109] => [110] => === Sustainable energy === [111] => [[Sustainable energy]] infrastructure includes types of renewable energy power plants as well as the means of exchange from the plant to the homes and businesses that use that energy. Renewable energy includes well researched and widely implemented methods such as wind, solar, and hydraulic power, as well as newer and less commonly used types of power creation such as fusion energy. Sustainable energy infrastructure must maintain a strong supply relative to demand, and must also maintain sufficiently low prices for consumers so as not to decrease demand. Any type of renewable energy infrastructure that fails to meet these consumption and price requirements will ultimately be forced out of the market by prevailing non renewable energy sources. [112] => [113] => === Sustainable water === [114] => Sustainable water infrastructure is focused on a community's sufficient access to clean, safe drinking water. Water is a public good along with electricity, which means that sustainable water catchment and distribution systems must remain affordable to all members of a population. "Sustainable Water" may refer to a nation or community's ability to be self-sustainable, with enough water to meet multiple needs including agriculture, industry, sanitation, and drinking water. It can also refer to the holistic and effective management of water resources.{{Cite web|url=http://www.aquatechtrade.com/news/water-treatment/sustainable-water-essential-guide|title=Sustainable water: our essential guide to sustainable water resource management solutions & strategies|website=aquatechtrade.com}} Increasingly, policy makers and regulators are incorporating [[Nature-based solutions]] (NBS or NbS) into attempts to achieve sustainable water infrastructure. [115] => [116] => === Sustainable waste management === [117] => Sustainable waste management systems aim to minimize the amount of waste products produced by individuals and corporations.{{cite book |doi=10.1061/9780784481202.037 |chapter=Unreliable Sustainable Infrastructure: Three Transformations to Guide Cities towards Becoming Healthy 'Smart Cities' |title=International Conference on Sustainable Infrastructure 2017 |date=2017 |last1=Fisher |first1=S. |last2=Reiner |first2=M. B. |last3=Sperling |first3=J. |pages=388–397 |isbn=978-0-7844-8120-2 }} Commercial waste management plans have transitioned from simple waste removal plans into comprehensive plans focused on reducing the total amount of waste produced before removal. Sustainable waste management is beneficial environmentally, and can also cut costs for businesses that reduce their amount of disposed goods. [118] => [119] => === Sustainable transportation === [120] => {{Main|Sustainable transport}} [121] => Sustainable transportation includes a shift away from private, greenhouse gas emitting cars in favor of adopting methods of transportation that are either [[carbon neutrality|carbon neutral]] or reduce carbon emissions such as bikes or electric bus systems.{{cite journal |last1=Hartman |first1=Meghan |last2=Knell |first2=Mark Bone |last3=Witherspoon |first3=Jay |title=Masdar City's Integrated Approach to Sustainability |journal=Proceedings of the Water Environment Federation |date=2010 |volume=2010 |issue=2 |pages=104–117 |doi=10.2175/193864710798285516 }} Additionally, cities must invest in the appropriate built environments for these ecologically preferable modes of transportation. Cities will need to invest in public transportation networks, as well as bike path networks among other sustainable solutions that incentivize citizens to use these alternate transit options. Reducing the urban dependency on cars is a fundamental goal of developing sustainable transportation, and this cannot be accomplished without a coordinated focus on both creating the methods of transportation themselves and providing them with networks that are equally or more efficient than existing car networks such as aging highway systems. [122] => [123] => === Sustainable materials === [124] => Another solution to transition into a more sustainable infrastructure is using more sustainable materials. A material is sustainable if the needed amount can be produced without depleting non-renewable resources.{{Cite web |title=What Are Sustainable Materials? |website=Center for Sustainable Materials |publisher=Rutgers |url=http://sustain.rutgers.edu/what_are_sustainable_materials |archive-url=https://web.archive.org/web/20120604213127/http://sustain.rutgers.edu:80/what_are_sustainable_materials |archive-date=4 June 2012 }} It also should have low environmental impacts by not disrupting the established steady-state equilibrium of it. The materials should also be resilient, renewable, reusable, and recyclable.{{Cite web|title=11 Characteristics of Sustainable Materials|url=https://simplicable.com/new/sustainable-materials|access-date=2020-11-06|website=Simplicable}} [125] => [126] => Today, concrete is one of the most common materials used in infrastructure. There is twice as much concrete used in construction than all other building materials combined.{{cite journal |last1=Gagg |first1=Colin R. |title=Cement and concrete as an engineering material: An historic appraisal and case study analysis |journal=Engineering Failure Analysis |date=May 2014 |volume=40 |pages=114–140 |doi=10.1016/j.engfailanal.2014.02.004 }} It is the backbone of industrialization, as it is used in bridges, piers, pipelines, pavements, and buildings.{{cite book |doi=10.1016/B978-0-12-817784-6.00008-4 |chapter=Graphene-reinforced cement composites for smart infrastructure systems |title=The Rise of Smart Cities |date=2022 |last1=Schulte |first1=Justine |last2=Jiang |first2=Zhangfan |last3=Sevim |first3=Ozer |last4=Ozbulut |first4=Osman E. |pages=79–114 |isbn=978-0-12-817784-6 }} However, while they do serve as a connection between cities, transportation for people and goods, and protection for land against flooding and erosion, they only last for 50 to 100 years.{{cite book |doi=10.1016/B978-0-08-102181-1.00030-7 |chapter=Foreword |title=Eco-Efficient Repair and Rehabilitation of Concrete Infrastructures |date=2018 |last1=Schlangen |first1=Erik |pages=xvii |isbn=978-0-08-102181-1 }} Many were built within the last 50 years, which means many infrastructures need substantial maintenance to continue functioning. [127] => [128] => However, concrete is not sustainable. The production of concrete contributes up to 8% of the world's greenhouse gas emissions.{{Cite web|date=2019-04-28|title=Why Building With Concrete is not Sustainable|url=https://www.iwbcc.com/why-building-with-concrete-is-not-sustainable/|access-date=2020-11-06|website=IWBC|language=en-US}} A tenth of the world's industrial water usage is from producing concrete. Even transporting the raw materials to concrete production sites adds to airborne pollution. Furthermore, the production sites and the infrastructures themselves all strip away agricultural land that could have been fertile soil or habitats vital to the ecosystem. [129] => [130] => == Green infrastructure == [131] => {{Main|Green infrastructure}} [132] => Green infrastructure is a type of sustainable infrastructure. Green infrastructure uses plant or soil systems to restore some of the natural processes needed to manage water and create healthier urban environments.{{cite journal |last1=Basdeki |first1=Aikaterini |last2=Katsifarakis |first2=Lysandros |last3=Katsifarakis |first3=Konstantinos L. |title=Rain Gardens as Integral Parts of Urban Sewage Systems-a Case Study in Thessaloniki, Greece |journal=Procedia Engineering |date=2016 |volume=162 |pages=426–432 |doi=10.1016/j.proeng.2016.11.084 |doi-access=free }} In a more practical sense, it refers to a decentralized network of stormwater management practices, which includes green roofs, trees, bioretention and infiltration, and permeable pavement.{{Cite web|date=2011-01-21|title=The Value of Green Infrastructure: A Guide to Recognizing Its Economic, Environmental and Social Benefits|url=https://www.cnt.org/publications/the-value-of-green-infrastructure-a-guide-to-recognizing-its-economic-environmental-and|access-date=2020-11-05|website=Center for Neighborhood Technology|language=en}} Green infrastructure has become an increasingly popular strategy in recent years due to its effectiveness in providing ecological, economic, and social benefits{{snd}}including positively impacting energy consumption, air quality, and carbon reduction and sequestration. [133] => [134] => === Green roofs === [135] => {{Main|green roof}} [136] => A green roof is a rooftop that is partially or completely covered with growing vegetation planted over a membrane. It also includes additional layers, including a root barrier and drainage and irrigation systems.{{cite journal |last1=Li |first1=W.C. |last2=Yeung |first2=K.K.A. |title=A comprehensive study of green roof performance from environmental perspective |journal=International Journal of Sustainable Built Environment |date=June 2014 |volume=3 |issue=1 |pages=127–134 |doi=10.1016/j.ijsbe.2014.05.001 |doi-access=free }} There are several categories of green roofs, including extensive (have a growing media depth ranging from two to six inches) and intensive (have a growing media with a depth greater than six inches). One benefit of green roofs is that they reduce [[stormwater runoff]] because of its ability to store water in its growing media, reducing the runoff entering the sewer system and waterways, which also decreases the risk of combined sewer overflows. They reduce energy usage since the growing media provides additional insulation, reduces the amount of solar radiation on the roof's surface, and provides evaporative cooling from water in the plants, which reduce the roof surface temperatures and heat influx. Green roofs also reduce atmospheric carbon dioxide since the vegetation sequesters carbon and, since they reduce energy usage and the urban heat island by reducing the roof temperature, they also lower carbon dioxide emissions from electricity generation.{{cite web|date=2014-06-17|title=Using Green Roofs to Reduce Heat Islands|url=https://www.epa.gov/heatislands/using-green-roofs-reduce-heat-islands|access-date=2020-11-05|website=United States Environmental Protection Agency|language=en}} [137] => [138] => === Tree planting === [139] => [[Tree planting]] provides a host of ecological, social, and economic benefits. Trees can intercept rain, support infiltration and water storage in soil, diminish the impact of raindrops on barren surfaces, minimize soil moisture through transpiration, and they help reduce stormwater runoff. Additionally, trees contribute to recharging local aquifers and improve the health of watershed systems. Trees also reduce energy usage by providing shade and releasing water into the atmosphere which cools the air and reduces the amount of heat absorbed by buildings. Finally, trees improve air quality by absorbing harmful air pollutants reducing the amount of greenhouse gases. [140] => [141] => === Bioretention and infiltration practices === [142] => There are a variety of types of bioretention and infiltration practices, including [[rain garden]]s and bioswales. A rain garden is planted in a small depression or natural slope and includes native shrubs and flowers. They temporarily hold and absorb rain water and are effective in removing up to 90% of nutrients and chemicals and up to 80% of sediments from the runoff.{{cite web |title=Soak Up the Rain: Permeable Pavement |url=https://www.epa.gov/soakuptherain/soak-rain-permeable-pavement |website=EPA |date=21 August 2015 }} As a result, they soak 30% more water than conventional gardens. Bioswales are planted in paved areas like parking lots or sidewalks and are made to allow for overflow into the sewer system by trapping silt and other pollutants, which are normally left over from impermeable surfaces. Both rain gardens and bioswales mitigate flood impacts and prevent stormwater from polluting local waterways; increase the usable water supply by reducing the amount of water needed for outdoor irrigation; improve air quality by minimizing the amount of water going into treatment facilities, which also reduces energy usage and, as a result, reduces air pollution since less greenhouse gases are emitted. [143] => [144] => == Smart cities == [145] => {{Main|smart cities|urban resilience}} [146] => Smart cities use innovative methods of design and implementation in various sectors of infrastructure and planning to create communities that operate at a higher level of relative sustainability than their traditional counterparts. In a sustainable city, [[urban resilience]] as well as infrastructure reliability must both be present. Urban resilience is defined by a city's capacity to quickly adapt or recover from infrastructure defects, and infrastructure reliability means that systems must work efficiently while continuing to maximize their output. When urban resilience and infrastructure reliability interact, cities are able to produce the same level of output at similarly reasonable costs as compared to other non sustainable communities, while still maintaining ease of operation and usage. [147] => [148] => === Masdar City === [149] => {{Main|Masdar City}} [150] => Masdar City is a proposed zero emission smart city that will be contracted in the United Arab Emirates.{{cite journal |last1=Nader |first1=Sam |title=Paths to a low-carbon economy—The Masdar example |journal=Energy Procedia |date=February 2009 |volume=1 |issue=1 |pages=3951–3958 |doi=10.1016/j.egypro.2009.02.199 |doi-access=free |bibcode=2009EnPro...1.3951N }} Some individuals have referred to this planned settlement as "utopia-like", due to the fact that it will feature multiple sustainable infrastructure elements, including energy, water, waste management, and transportation. Masdar City will have a power infrastructure containing renewable energy methods including solar energy. [151] => [152] => Masdar City is located in a desert region, meaning that sustainable collection and distribution of water is dependent on the city's ability to use water at innovative stages of the water cycle.{{Cite journal|date=July 2006|title=Wastewater Management Fact Sheet|url=https://www.epa.gov/sites/production/files/2019-08/documents/energy_conservation_fact_sheet_p100il6t.pdf|journal=EPA: Office of Water}} The city will use groundwater, greywater, seawater, blackwater, and other water resources to obtain both drinking and landscaping water. [153] => [154] => Initially, Masdar City will be waste-free. Recycling and other waste management and waste reduction methods will be encouraged. Additionally, the city will implement a system to convert waste into fertilizer, which will decrease the amount of space needed for waste accumulation as well as provide an environmentally friendly alternative to traditional fertilizer production methods. [155] => [156] => No cars will be allowed in Masdar City, contributing to low carbon emissions within the city boundaries. Instead, alternative transportation options will be prioritized during infrastructure development. This means that a bike lane network will be accessible and comprehensive, and other options will also be available. [157] => [158] => ==See also== [159] => {{Portal|Engineering}} [160] => {{div col|colwidth=30em}} [161] => * [[Agile infrastructure]] [162] => * [[Airport infrastructure]] [163] => * [[Asset Management Plan]] [164] => * [[Green infrastructure]] [165] => * [[Infrastructure as a service]] [166] => * [[Infrastructure asset management]] [167] => * [[Infrastructure building]] [168] => * [[Infrastructure security]] [169] => * [[Logistics]] [170] => * [[Megaproject]] [171] => * [[Project finance]] [172] => * [[Pseudo-urbanization]] [173] => * [[Public capital]] [174] => * [[Sustainable architecture]] [175] => * [[Sustainable engineering]] [176] => {{div col end}} [177] => [178] => ==References== [179] => {{Reflist}} [180] => [181] => ==Bibliography== [182] => * Koh, Jae Myong (2018) ''Green Infrastructure Financing: Institutional Investors, PPPs and Bankable Projects'', London: Palgrave Macmillan. {{ISBN|978-3-319-71769-2}}. [183] => * {{cite journal |last1=Nurre |first1=Sarah G. |last2=Cavdaroglu |first2=Burak |last3=Mitchell |first3=John E. |last4=Sharkey |first4=Thomas C. |last5=Wallace |first5=William A. |title=Restoring infrastructure systems: An integrated network design and scheduling (INDS) problem |journal=European Journal of Operational Research |date=December 2012 |volume=223 |issue=3 |pages=794–806 |doi=10.1016/j.ejor.2012.07.010 }} [184] => * {{cite book|last=Ascher|first=Kate|others=Researched by Wendy Marech|title=The works: anatomy of a city|year=2007|publisher=Penguin Press|location=New York|isbn=978-0-14-311270-9|edition=Reprint}} [185] => * Larry W. Beeferman, "Pension Fund Investment in Infrastructure: A Resource Paper", ''Capital Matter'' (Occasional Paper Series), No. 3 December 2008 [186] => * A. Eberhard, "Infrastructure Regulation in Developing Countries", ''PPIAF Working Paper No. 4'' (2007) World Bank [187] => * M. Nicolas J. Firzli and Vincent Bazi, "Infrastructure Investments in an Age of Austerity: The Pension and Sovereign Funds Perspective", published jointly in ''Revue Analyse Financière'', Q4 2011 issue, pp. 34–37 and USAK/JTW July 30, 2011 (online edition) [188] => * {{cite book|last=Hayes|first=Brian|title=Infrastructure: the book of everything for the industrial landscape|year=2005|publisher=Norton|location=New York|isbn=978-0-393-32959-9|edition=1st}} [189] => * {{cite book|last=Huler|first=Scott|title=On the grid: a plot of land, an average neighborhood, and the systems that make our world work|year=2010|publisher=Rodale|location=Emmaus, PA|isbn=978-1-60529-647-0|url-access=registration|url=https://archive.org/details/ongridplotofland00hule}} [190] => * Georg Inderst, "Pension Fund Investment in Infrastructure", ''OECD Working Papers on Insurance and Private Pensions'', No. 32 (2009) [191] => * {{cite book|last=Dalakoglou|first=Dimitris|title=The Road: An Ethnography of (Im)mobility, space and cross-border infrastructures |year=2017|publisher= Manchester University Press/ Oxford university Press|location= Manchester}} [192] => [193] => ==External links== [194] => {{Commons category|Infrastructure}} [195] => {{Wiktionary|infrastructure}} [196] => * [http://www.regulationbodyofknowledge.org/ Body of Knowledge on Infrastructure Regulation] [197] => * [http://www.nextgenerationinfrastructures.eu/ Next Generation Infrastructures international research programme] [198] => * [http://www.infrastructurereportcard.org/ Report Card on America's Infrastructure] [199] => * [https://docupedia.de/zg/Laak_infrastructures_v1_en_2021 Dirk van Laak: ''Infrastructures''], version: 1.0, in: Docupedia Zeitgeschichte, 20th may 2021 [200] => [201] => {{Infrastructure|state=expanded}} [202] => {{Public infrastructure topics|state=expanded}} [203] => {{Rail tracks}} [204] => [205] => {{Authority control}} [206] => [207] => [[Category:Infrastructure| ]] [208] => [[Category:Construction]] [209] => [[Category:Technology in society]] [] => )
good wiki

Infrastructure

Infrastructure is the system of physical structures, facilities, and services needed for the functioning of a society or organization. It includes transportation networks (such as roads, bridges, and railways), communication systems (such as telephone lines and internet connectivity), water and sewage systems, energy networks (such as electricity and gas supplies), and public institutions (such as schools, hospitals, and government offices).

More about us

About

It includes transportation networks (such as roads, bridges, and railways), communication systems (such as telephone lines and internet connectivity), water and sewage systems, energy networks (such as electricity and gas supplies), and public institutions (such as schools, hospitals, and government offices). Infrastructure plays a vital role in economic development, as it supports and facilitates various activities essential for growth, such as trade, commerce, and production. It also contributes to the quality of life by providing access to basic services and improving living conditions. The planning, construction, and management of infrastructure involve multiple stakeholders, including governments, private businesses, and local communities.

Expert Team

Vivamus eget neque lacus. Pellentesque egauris ex.

Award winning agency

Lorem ipsum, dolor sit amet consectetur elitorceat .

10 Year Exp.

Pellen tesque eget, mauris lorem iupsum neque lacus.