Array ( [0] => {{Short description|First lunar orbiter of India's Chandrayaan Programme}} [1] => {{Copy edit|for=style, inline cites and cohesion|date=August 2023}} [2] => {{EngvarB|date=February 2017}} [3] => {{Use dmy dates|date=May 2020}} [4] => {{Infobox spaceflight [5] => | name = Chandrayaan-1 [6] => | image = CY1 2007 (cropped).jpg [7] => | image_size = 300px [8] => | image_caption = [9] => | insignia = [10] => | mission_type = [[Moon|Lunar]] [[orbiter]] and [[Moon Impact Probe|Impactor]] [11] => | operator = [[ISRO]] [12] => | COSPAR_ID = 2008-052A [13] => | SATCAT = 33405 [14] => | website = {{URL|http://www.isro.gov.in/Spacecraft/chandrayaan-1}} [15] => | mission_duration = Planned: 2 years
Final: {{time interval|22 October 2008 00:52|28 August 2009 20:00|show=ymd|sep=,}} [16] => | manufacturer = [[ISRO]] [17] => | dry_mass = {{convert|560|kg|lb|abbr=on}}{{cite web |last1=Datta |first1=Jayati |last2=Chakravarty |first2=S. C. |title=Chandrayaan-1 India's First Mission to Moon |url=https://www.vssc.gov.in/VSSC_HINDI/images/chandrayaan1/chandrayanwebsite/resourcePDF/Chandrayaan-1-booklet3.pdf |website=VSSC.gov.in |access-date=16 August 2019 |archive-url=https://web.archive.org/web/20190816061032/https://www.vssc.gov.in/VSSC_HINDI/images/chandrayaan1/chandrayanwebsite/resourcePDF/Chandrayaan-1-booklet3.pdf |archive-date=16 August 2019}} [18] => | payload_mass = {{convert|105|kg|lb|abbr=on}} [19] => | launch_mass = {{convert|1380|kg|lb|abbr=on}}{{cite web |url=http://www.isro.org/Chandrayaan/htmls/spacecraft_description.htm |title=Spacecraft Description |access-date=4 November 2008 |publisher=ISRO |url-status=dead |archive-url=https://web.archive.org/web/20081028053028/http://isro.org/Chandrayaan/htmls/spacecraft_description.htm |archive-date=28 October 2008 }} [20] => | power = [21] => | launch_date = {{start-date|22 October 2008, 00:52}} UTC [22] => | launch_rocket = [[Polar Satellite Launch Vehicle#PSLV-XL|PSLV-XL]] C11{{cite web |url=http://www.isro.org/chandrayaan/htmls/mission_sequence.htm |title=Mission Sequence |access-date=5 November 2008 |publisher=ISRO |archive-date=6 July 2010 |archive-url=https://web.archive.org/web/20100706225136/http://www.isro.org/chandrayaan/htmls/mission_sequence.htm |url-status=live }}{{cite news |url=http://www.hindu.com/2008/10/15/stories/2008101556421300.htm |archive-url=https://web.archive.org/web/20081017103244/http://www.hindu.com/2008/10/15/stories/2008101556421300.htm |url-status=dead |archive-date=17 October 2008 |title=Chandrayaan-1 shifted to VAB |date=22 October 2008 |access-date=15 October 2008 |work=[[The Hindu]]}} [23] => | launch_site = [[Satish Dhawan Space Centre#Second Launch Pad|Satish Dhawan Space Centre]] [24] => | launch_contractor = [[ISRO]] [25] => | last_contact = {{end-date|28 August 2009, 20:00}} UTC [26] => | decay_date = [27] => | orbit_epoch = 19 May 2009 [28] => | orbit_reference = [[selenocentric orbit|Selenocentric]] [29] => | orbit_periapsis = {{convert|200|km|mi|abbr=on}} [30] => | orbit_apoapsis = {{convert|200|km|mi|abbr=on}} [31] => | orbit_semimajor = {{convert|1758|km|mi|sp=us}} [32] => | orbit_inclination = [33] => | orbit_period = [34] => | orbit_eccentricity = 0.0 [35] => | apsis = selene [36] => | interplanetary = {{Infobox spaceflight/IP [37] => |type = orbiter [38] => |object = [[Moon|Lunar]] [39] => |orbits = 3,400 at EOM [40] => |arrival_date = 8 November 2008 [41] => |location = [42] => }} [43] => | programme = [[Chandrayaan programme]] [44] => | previous_mission = [45] => | next_mission = [[Chandrayaan-2]] [46] => }} [47] => [48] => '''Chandrayaan-1''' ({{audio|Chandrayaan.ogg|pronunciation}}; from [[Sanskrit]]: {{lang|sa|[[Chandra]]}}, "Moon" and {{lang|sa|yāna}}, "craft, vehicle"){{Cite news|url=https://www.cnn.com/2019/07/14/asia/india-moon-rover-launch-intl-hnk/index.html|publisher=CNN|title=India delays mission to land a rover on the moon|access-date=30 July 2019|archive-date=5 December 2019|archive-url=https://web.archive.org/web/20191205023639/https://www.cnn.com/2019/07/14/asia/india-moon-rover-launch-intl-hnk/index.html|url-status=live}} was the first Indian [[exploration of the Moon|lunar]] [[Robotic spacecraft|probe]] under the [[Chandrayaan programme]]. It was launched by the [[ISRO|Indian Space Research Organisation]] (ISRO) in October 2008, and operated until August 2009. The mission included an orbiter and an impactor. [[India]] launched the spacecraft using a [[Polar Satellite Launch Vehicle#PSLV-XL|PSLV-XL]] rocket on 22 October 2008 at 00:52 UTC from [[Satish Dhawan Space Centre]], at [[Sriharikota]], [[Andhra Pradesh]].{{cite news |url=http://www.isro.gov.in/pressrelease/scripts/pressreleasein.aspx?Oct22_2008 |title=PSLV-C11 Successfully Launches Chandrayaan-1 |date=22 October 2008 |access-date=11 March 2012 |publisher=ISRO |archive-url=https://web.archive.org/web/20120107014114/http://isro.gov.in/pressrelease/scripts/pressreleasein.aspx?Oct22_2008 |archive-date=7 January 2012 |url-status=dead }} The mission was a major boost to India's space program, as India researched and developed indigenous technology to explore the Moon.{{cite news |first=Anjana |last=Pasricha |title=India Launches First Unmanned Mission to Moon |date=22 October 2008 |publisher=Voice of America |url=http://voanews.com/english/archive/2008-10/2008-10-22-voa11.cfm |access-date=27 December 2008 |archive-url=https://web.archive.org/web/20090801061001/http://www.voanews.com/english/archive/2008-10/2008-10-22-voa11.cfm |archive-date=1 August 2009 |url-status=dead }} The vehicle was inserted into lunar orbit on 8 November 2008. [49] => [50] => On 14 November 2008, the [[Moon Impact Probe]] separated from the Chandrayaan orbiter at 14:36 UTC and struck the south pole in a controlled manner. The probe hit near the crater [[Shackleton (crater)|Shackleton]] at 15:01 UTC.{{Cite web |title=Chandrayaan-1 starts observations of the Moon |url=https://www.esa.int/Science_Exploration/Space_Science/Chandrayaan-1_starts_observations_of_the_Moon |access-date=2022-07-29 |website=www.esa.int |language=en}}{{Cite web |date=2008-12-18 |title=An afterthought |url=https://frontline.thehindu.com/science-and-technology/article30198606.ece |access-date=2022-07-29 |website=frontline.thehindu.com |language=en |archive-date=2 December 2022 |archive-url=https://web.archive.org/web/20221202192105/https://frontline.thehindu.com/science-and-technology/article30198606.ece |url-status=live }}{{cite news |title=Chandrayaan team over the Moon |date=15 November 2008 |url=http://www.hindu.com/2008/11/15/stories/2008111560851200.htm|archive-url=https://web.archive.org/web/20081216120324/http://www.hindu.com/2008/11/15/stories/2008111560851200.htm|url-status=dead|work=[[The Hindu]] |archive-date=16 December 2008}}{{Cite web |title=081125 Chandrayaan1 Moon probe a big hit |url=https://www.astronomynow.com/081125Chandrayaan1Moonprobeabighit.html |access-date=2022-07-29 |website=www.astronomynow.com |archive-date=29 July 2022 |archive-url=https://web.archive.org/web/20220729124931/https://www.astronomynow.com/081125Chandrayaan1Moonprobeabighit.html |url-status=dead }} The location of impact was named [[Jawahar Point]].{{Cite book|chapter-url=https://www.isro.gov.in/sites/default/files/article-files/node/7808/from_fishing_hamlet_to_red_planet_p_v_manoranjan_r.epub|title=From Fishing Hamlet To Red Planet|publisher=Harper Collins|year=2015|isbn=978-9351776895|pages=506|chapter=8.4 Chandrayaan-1 Mission The New Face of the Moon by J.N. GOSWAMI|quote=The landing site of the MIP was named 'Jawahar Sthal' to commemorate the birthday of India's first Prime Minister, Jawaharlal Nehru, which also falls on 14 November coinciding with the date of the MIP impact.|access-date=28 March 2019|archive-date=9 September 2017|archive-url=https://web.archive.org/web/20170909100121/http://www.isro.gov.in/sites/default/files/article-files/node/7808/from_fishing_hamlet_to_red_planet_p_v_manoranjan_r.epub|url-status=dead}} With this mission, ISRO became the fifth [[National Space Agency|national space agency]] to reach the lunar surface. Other nations whose [[National Space Agency|national space agencies]] to have done so [[Moon landing|prior]] were the former [[Soviet Union]] in 1959,{{cite web |title=Luna 2 |url=https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=1959-014A |access-date=3 December 2013 |publisher=US National Space Science Data Center |archive-date=25 August 2019 |archive-url=https://web.archive.org/web/20190825003339/https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=1959-014A |url-status=live }} the United States in 1962,{{cite web |title=Ranger 3 |url=https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=1962-001A |access-date=3 December 2013 |publisher=US National Space Science Data Center |archive-date=8 January 2017 |archive-url=https://web.archive.org/web/20170108223625/http://nssdc.gsfc.nasa.gov/nmc/spacecraftDisplay.do?id=1962-001A |url-status=live }} Japan in 1993,{{cite web |title=Hiten |url=https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=1990-007A |access-date=12 April 2019 |publisher=NASA Space Science Data Coordinated Archive (NSSDCA) |archive-date=17 April 2019 |archive-url=https://web.archive.org/web/20190417145523/https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=1990-007A |url-status=live }} and [[European Space Agency|ESA member states]] in 2006.{{cite news |date=3 September 2006 |title=Probe crashes into Moon's surface |work=BBC News |url=http://news.bbc.co.uk/1/hi/sci/tech/5309656.stm |access-date=23 May 2010 |archive-date=13 May 2008 |archive-url=https://web.archive.org/web/20080513054229/http://news.bbc.co.uk/1/hi/sci/tech/5309656.stm |url-status=live }}{{cite web |title=China's lunar probe Chang'e-1 impacts moon_English_Xinhua |url=http://news.xinhuanet.com/english/2009-03/01/content_10923205.htm |url-status=dead |archive-url=https://web.archive.org/web/20090302170937/http://news.xinhuanet.com/english/2009-03/01/content_10923205.htm |archive-date=2009-03-02 |website=news.xinhuanet.com}}{{cite news |last1=Laxman |first1=Srinivas |date=15 November 2008 |title=Chandrayaan-I Impact Probe lands on moon |publisher=[[Times Of India]] |url=http://timesofindia.indiatimes.com/Chandrayaan-I_Impact_Probe_lands_on_moon/articleshow/3714245.cms |access-date=14 November 2008 |archive-date=20 April 2019 |archive-url=https://web.archive.org/web/20190420212642/https://timesofindia.indiatimes.com/Chandrayaan-I_Impact_Probe_lands_on_moon/articleshow/3714245.cms |url-status=live }} [51] => [52] => With an estimated cost for the project was {{INRConvert|386|c|mode=historical|year=2008}}, it was intended to survey the lunar surface over a two-year period, to produce a complete map of the chemical composition at the surface and three-dimensional topography. The polar regions are of special interest as they might contain water ice.{{Cite web |url=http://164.100.158.235/question/annex/243/Au2222.pdf |title=Question No. 2222: Status of Chandrayaan Programme |publisher=[[Rajya Sabha]] |first1=Prasanna |last1=Acharya |author1-link=Prasanna Acharya |first2=Jitendra |last2=Singh |author2-link=Jitendra Singh (BJP politician) |date=3 August 2017 |access-date=3 August 2017 |archive-date=3 August 2017 |archive-url=https://web.archive.org/web/20170803171227/http://164.100.158.235/question/annex/243/Au2222.pdf |url-status=live }}{{cite journal |title=Title: Chandrayaan-1: Science goals |author=Bhandari N. |journal=Journal of Earth System Science |volume=114 |issue=6 |page=699 |year=2005 |url=http://www.ias.ac.in/jessci/dec2005/ilc-14.pdf |doi=10.1007/BF02715953 |bibcode=2005JESS..114..701B |s2cid=55469375 |access-date=15 September 2006 |archive-date=2 December 2019 |archive-url=https://web.archive.org/web/20191202113216/https://www.ias.ac.in/jessci/dec2005/ilc-14.pdf |url-status=live }} Among its many achievements was the discovery of widespread presence of [[Lunar water|water molecules]] in lunar soil.{{Cite web|url=https://www.voanews.com/a/a-13-2009-09-24-voa46-68806852/362715.html|title=Lunar Missions Detect Water on Moon|date=2 November 2009|website=VOA}} [53] => [54] => After almost a year, the orbiter started experiencing several technical issues including failure of the [[star tracker]] and poor thermal shielding; Chandrayaan-1 stopped communicating at about 20:00 UTC on 28 August 2009, shortly after which the ISRO officially declared that the mission was over. Chandrayaan-1 operated for 312 days as opposed to the intended two years; however, the mission achieved most of its scientific objectives, including detecting the presence of [[Lunar water]].{{cite news |url=http://isro.org/pressrelease/scripts/pressreleasein.aspx?Aug29_2009 |archive-url=https://web.archive.org/web/20090830184019/http://www.isro.org/pressrelease/scripts/pressreleasein.aspx?Aug29_2009 |url-status=dead |archive-date=30 August 2009 |title=Chandrayaan-I Spacecraft Loses Radio Contact |date=29 August 2009 |publisher=ISRO |access-date=31 August 2009 }}{{cite news |url=http://www.hindu.com/2009/08/31/stories/2009083157910100.htm |archive-url=https://web.archive.org/web/20090902100254/http://www.hindu.com/2009/08/31/stories/2009083157910100.htm |url-status=dead |archive-date=2 September 2009 |title=Chandrayaan-1 mission terminated |date=31 August 2009 |work=[[The Hindu]] |access-date=31 August 2009}}{{cite news |url=http://indianexpress.com/?s=Chandrayaan%2C+India%27s+first+Moon+mission+is+over%3A+Project+Director |title=Chandrayaan, India's first Moon mission is over: Project Director |date=29 August 2009 |agency=Press Trust of India |work=Indian Express |access-date=19 September 2014 |archive-date=2 January 2020 |archive-url=https://web.archive.org/web/20200102102648/http://indianexpress.com/?s=Chandrayaan%2C+India%27s+first+Moon+mission+is+over%3A+Project+Director |url-status=live }}{{cite web |url=http://www.ptinews.com/news/276741_Chandrayan-not-a-failure--NASA-astronaut |title=Chandrayan not a failure: NASA astronaut |work=Press Trust of India |access-date=17 September 2009 |archive-date=14 September 2009 |archive-url=https://web.archive.org/web/20090914135154/http://www.ptinews.com/news/276741_Chandrayan-not-a-failure--NASA-astronaut |url-status=live }} [55] => [56] => On 2 July 2016, [[NASA]] used ground-based radar systems to relocate Chandrayaan-1 in its lunar orbit, almost seven years after it shut down.{{Cite news |url=http://www.cnn.com/2017/03/10/health/nasa-chandrayaan-spacecraft-found/index.html |title=NASA finds lunar spacecraft that vanished 8 years ago |work=CNN |first=Faith |last=Karimi |date=10 March 2017 |access-date=10 March 2017 |archive-date=25 December 2019 |archive-url=https://web.archive.org/web/20191225063136/https://www.cnn.com/2017/03/10/health/nasa-chandrayaan-spacecraft-found/index.html |url-status=live }}{{cite web |url=https://www.nasa.gov/feature/jpl/new-nasa-radar-technique-finds-lost-lunar-spacecraft |title=New NASA Radar Technique Finds Lost Lunar Spacecraft |publisher=NASA |first=D. C. |last=Agle |date=9 March 2017 |access-date=10 March 2017 |archive-date=13 March 2017 |archive-url=https://web.archive.org/web/20170313040757/https://www.nasa.gov/feature/jpl/new-nasa-radar-technique-finds-lost-lunar-spacecraft/ |url-status=live }} Repeated observations over the next three months allowed a precise determination of its orbit which varies between {{convert|150|and|270|km|mi|abbr=on}} in altitude every two years.{{Cite web |url=http://164.100.47.190/loksabhaquestions/annex/12/AU2783.pdf |title=Question No. 2783: Chandrayaan-1 |publisher=[[Lok Sabha]] |first1=M. |last1=Udhayakumar |author1-link=M. Udhayakumar |first2=Jitendra |last2=Singh |author2-link=Jitendra Singh (BJP politician) |date=2 August 2017 |access-date=2 August 2017 |archive-url=https://web.archive.org/web/20170802210133/http://164.100.47.190/loksabhaquestions/annex/12/AU2783.pdf |archive-date=2 August 2017 |url-status=dead }} [57] => [58] => == History == [59] => Former [[Prime Minister of India]], [[Atal Bihari Vajpayee]], announced the ''Chandrayaan 1'' project {{Cite web|url=https://www.isro.gov.in/update/29-dec-2003/2003-eventful-year-isro|title=2003 – An Eventful Year for ISRO |website=www.isro.gov.in|access-date=24 July 2019|archive-date=24 July 2019|archive-url=https://web.archive.org/web/20190724181521/https://www.isro.gov.in/update/29-dec-2003/2003-eventful-year-isro|url-status=dead}} The mission was a major boost to India's space program.{{cite news |first=Pallava |last=Bagla |title=India Moon mission is 'mixed success' |date=31 August 2009 |work=BBC News |url=http://news.bbc.co.uk/2/hi/south_asia/8230230. |archive-date=5 December 2019 |archive-url=https://web.archive.org/web/20191205023507/http://news.bbc.co.uk/2/hi/south_asia/8230230.stm |url-status=live }} The idea of an Indian scientific mission to the Moon was first raised in 1999 during a meeting of the [[Indian Academy of Sciences]]. The Astronautical Society of India (ASI) began planning the implementation of such an idea in 2000. Soon after, the Indian Space Research Organisation (ISRO) set up the National Lunar Mission Task Force. The Task Force concluded that ISRO had the technical expertise to carry out an Indian mission to the Moon. In April 2003, over 100 Indian scientists spanning fields from planetary and space sciences, [[Earth sciences]], physics, chemistry, astronomy, astrophysics, engineering, and communication sciences discussed and approved the Task Force recommendation to launch an Indian probe to the Moon. Six months later, in November, the [[Vajpayee government]] formally approved the mission.{{Cite web |url=http://shiksha.isro.gov.in/pdf/books/1.pdf |title=Chandrayaan-1: India's first scientific mission to the Moon |access-date=17 August 2015 |archive-url=https://web.archive.org/web/20140802062110/http://shiksha.isro.gov.in/pdf/books/1.pdf |archive-date=2 August 2014 |url-status=dead }} [60] => [61] => == Objectives == [62] => The mission had the following stated objectives:{{cite web |url=http://www.isro.org/chandrayaan/htmls/objective_scientific.htm |title=Objectives |access-date=22 October 2008 |publisher=ISRO |url-status=dead |archive-url=https://web.archive.org/web/20081026041754/http://www.isro.org/Chandrayaan/htmls/objective_scientific.htm |archive-date=26 October 2008 }} [63] => [64] => * to design, develop, launch, and orbit a spacecraft around the Moon using an Indian-made launch vehicle [65] => * to conduct scientific experiments using instruments on the spacecraft which would yield data: [66] => ** for the preparation of a three-dimensional atlas (with high spatial and altitude resolution of {{convert|5|-|10|m|ft|disp=or|abbr=on}}) of both the near and far sides of the Moon [67] => ** for chemical and mineralogical mapping of the entire lunar surface at high spatial resolution, mapping particularly the chemical elements [[magnesium]], [[aluminium]], [[silicon]], [[calcium]], [[iron]], [[titanium]], [[radon]], [[uranium]], and [[thorium]] [68] => * to increase scientific knowledge [69] => * to test the impact of a sub-satellite (Moon Impact Probe – MIP) on the surface of the Moon as a fore-runner for future soft-landing missions [70] => [71] => === Goals === [72] => To reach its objective, the mission defined these goals: [73] => [74] => * High-resolution mineralogical and [[chemical imaging]] of the permanently shadowed north- and south-polar regions [75] => * To search for surface or sub-surface [[lunar water]]-ice, especially at the lunar poles [76] => * Identification of chemicals in lunar highland rocks [77] => * Chemical [[stratigraphy]] of the lunar crust by [[remote sensing]] of the central [[Highland (geography)|uplands]] of large lunar craters, and of the South Pole Aitken Region (SPAR), an expected site of interior material [78] => * Mapping the height variation of features of the lunar surface [79] => * Observation of [[X-ray]] spectrum greater than 10 keV and stereographic coverage of most of the Moon's surface with {{convert|5|m|ft|abbr=on}} resolution [80] => * Providing new insights in understanding the Moon's origin and evolution{{citation needed|date=January 2019}} [81] => [82] => == Specifications == [83] => [[File:Chandrayaan-1.svg|thumb|Diagram of the Chandrayaan-1 spacecraft]] [84] => ;Mass [85] => :{{convert|1380|kg|lb|0|abbr=on}} at launch, {{convert|675|kg|lb|0|abbr=on}} at lunar orbit,{{cite web |url=http://www.isro.gov.in/Chandrayaan/htmls/spacecraft_description.htm |title=Specifications of Chandrayaan 1 |access-date=22 October 2008 |date=October 2008 |publisher=Indian Space Research Organisation |url-status=dead |archive-url=https://web.archive.org/web/20081023064658/http://www.isro.gov.in/Chandrayaan/htmls/spacecraft_description.htm |archive-date=23 October 2008 }} and {{convert|523|kg|lb|0|abbr=on}} after releasing the impactor. [86] => ;Dimensions [87] => :Cuboid in shape of approximately {{convert|1.5|m|ft|abbr=on}} [88] => ;Communications [89] => : [[X band]], {{convert|0.7|m|ft|abbr=on}} diameter dual [[gimbal]]led parabolic antenna for payload data transmission. The Telemetry, Tracking & Command (TTC) communication operates in [[S band]] frequency. [90] => ;Power [91] => :The spacecraft was mainly powered by its [[Photovoltaic array|solar array]], which included one solar panel covering a total area of {{convert|2.15|xx|1.8|m|ft|1|abbr=on}} generating 750 [[Watt|W]] of peak power, which was stored in a 36 [[ampere hour|A·h]] [[lithium-ion battery]] for use during eclipses.{{cite web |url=http://www.isro.gov.in/Chandrayaan/htmls/faqs.htm |title=FAQ on Chandrayaan 1 |access-date=22 October 2008 |date=October 2008 |publisher=Indian Space Research Organisation |url-status=dead |archive-url=https://web.archive.org/web/20081107230056/http://www.isro.gov.in/Chandrayaan/htmls/faqs.htm |archive-date=7 November 2008 }} [92] => ;Propulsion [93] => :The spacecraft used a [[Bipropellant rocket|bipropellant]] integrated propulsion system to reach lunar orbit as well as orbit and altitude maintenance while orbiting the Moon. The power plant consisted of one 440 [[newton (unit)|N]] engine and eight 22 N thrusters. Fuel and oxidiser were stored in two tanks of {{convert|390|L|USgal}} each. [94] => ;Navigation and control [95] => :The craft was [[3-axis stabilized spacecraft|3-axis stabilised]] with two [[Attitude dynamics and control#Star tracker|star sensors]], [[Gyroscopes|gyros]] and four [[reaction wheels]]. The craft carried dual redundant bus management units for attitude control, sensor processing, antenna orientation, etc. [96] => [97] => == Payload == [98] => The scientific payload had a mass of {{convert|90|kg|lb|0|abbr=on}} and contained five Indian instruments and six instruments from other countries. [99] => [100] => === Indian instruments === [101] => * '''TMC''' or the '''Terrain Mapping Camera''' is a [[CMOS camera]] with {{convert|5|m|ft|abbr=on}} resolution and a {{convert|40|km|mi|abbr=on}} swath in the [[panchromatic]] band and was used to produce a high-resolution map of the Moon.{{cite journal |title=Terrain mapping camera for Chandrayaan-1 |url=http://www.ias.ac.in/jessci/dec2005/ilc-16.pdf |doi=10.1007/BF02715955 |author1=A. S. Kiran Kumar |author2=A. Roy Chowdhury |journal=J. Earth Syst. Sci. |volume=114 |issue=6 |year=2005 |pages=717–720 |bibcode=2005JESS..114..717K |s2cid=189885169 |doi-access=free |access-date=27 October 2006 |archive-date=3 November 2019 |archive-url=https://web.archive.org/web/20191103224826/https://www.ias.ac.in/jessci/dec2005/ilc-16.pdf |url-status=live }} This instrument aimed to completely map the topography of the Moon. The camera works in the visible region of the electromagnetic spectrum and captures black-and-white stereo images. When used in conjunction with data from the Lunar Laser Ranging Instrument (LLRI), it can help in a better understanding of the lunar gravitational field as well. TMC was built by the ISRO's Space Applications Centre (SAC) at Ahmedabad.{{cite web |url=http://isro.gov.in/Chandrayaan/htmls/psexperiments.htm |access-date=15 March 2012 |title=Chandrayaan 1 – The payloads |archive-url=https://web.archive.org/web/20120402130343/http://isro.gov.in/Chandrayaan/htmls/psexperiments.htm |archive-date=2 April 2012 |url-status=dead }} The TMC was tested on 29 October 2008 through a set of commands issued from ISTRAC.{{cite web |url=http://www.isro.gov.in/pressrelease/scripts/pressreleasein.aspx?Oct31_2008 |title=Chandrayaan-1 Camera Tested |access-date=1 November 2008 |publisher=ISRO |archive-url=https://web.archive.org/web/20090827075801/http://isro.gov.in/pressrelease/scripts/pressreleasein.aspx?Oct31_2008 |archive-date=27 August 2009 |url-status=dead }} [102] => * '''HySI''' or '''[[Hyperspectral imaging|Hyper Spectral Imager]]''' is a CMOS camera, that performed mineralogical mapping in the 400–900 nm band with a spectral resolution of 15 nm and a spatial resolution of {{convert|80|m|ft|abbr=on}}. [103] => * '''LLRI''' or '''Lunar [[Laser rangefinder|Laser Ranging Instrument]]''' determines the height of the surface topography by sending pulses of [[infrared]] [[laser]] light towards the lunar surface and detecting the reflected portion of that light. It operated continuously and collected 10 measurements per second on both the day and night sides of the Moon. LLRI was developed by Laboratory for Electro Optics Systems of ISRO, Bangalore.{{cite web |url=http://www.isro.gov.in/pressrelease/scripts/pressreleasein.aspx?Nov16_2008 |title=LASER Instrument on Chandrayaan-1 Successfully Turned ON |access-date=17 November 2008 |publisher=ISRO |archive-url=https://web.archive.org/web/20090827091133/http://isro.gov.in/pressrelease/scripts/pressreleasein.aspx?Nov16_2008 |archive-date=27 August 2009 |url-status=dead }} It was tested on 16 November 2008.{{cite news |url=http://www.hindu.com/2008/11/17/stories/2008111759491100.htm |archive-url=https://web.archive.org/web/20090207025914/http://hindu.com/2008/11/17/stories/2008111759491100.htm |url-status=dead |archive-date=7 February 2009 |title=Laser instrument on board Chandrayaan-1 activated |date=17 November 2008 |access-date=17 November 2008 |work=[[The Hindu]]}} [104] => * '''HEX''' is a '''High Energy aj/gamma x-ray spectrometer''' for 30–200 keV measurements with ground resolution of {{convert|40|km|mi|abbr=on}}, the HEX measured [[Uranium|U]], [[Thorium|Th]], [[lead-210|210Pb]], [[radon-222|222Rn]] degassing, and other radioactive elements. [105] => * '''MIP''' or the '''[[Moon Impact Probe]]''' developed by the ISRO, is an impact probe that consists of a C-band Radar altimeter for measurement of the altitude of the probe, a video imaging system for acquiring images of the lunar surface and a mass spectrometer for measuring the constituents of the lunar atmosphere.{{cite web |url=http://isro.gov.in/Chandrayaan/htmls/psexperiments.htm |title=Chandrayaan-1: The Payloads |access-date=15 March 2012 |publisher=ISRO |archive-url=https://web.archive.org/web/20120402130343/http://isro.gov.in/Chandrayaan/htmls/psexperiments.htm |archive-date=2 April 2012 |url-status=dead }} It was ejected at 14:30 UTC on 14 November 2008. As planned, the Moon Impact Probe impacted the lunar south pole at 15:01 UTC on 14 November 2008. ISRO was the fifth national space agency to reach the surface of the Moon. Other [[National Space Agency|national space agencies]] to have done so prior were the former [[Soviet Union]] in 1959, the United States in 1962, Japan in 1993, and ESA in 2006. [106] => [107] => === Instruments from other countries === [108] => [[File:Moon Mineralogy Mapper left.jpg|thumb|Moon Mineralogy Mapper (left)]] [109] => [[File:SIR-2 Logo.jpg|thumb|SIR-2 Logo]] [110] => [111] => * '''C1XS''' or '''[[X-ray fluorescence]] spectrometer''' covering 1–10 keV, mapped the abundance of [[Magnesium|Mg]], [[Aluminium|Al]], [[Silicon|Si]], [[Calcium|Ca]], [[Titanium|Ti]], and [[Iron|Fe]] at the surface with a ground resolution of {{convert|25|km|mi|abbr=on}}, and monitored solar [[flux]].{{cite web |title=The Chandrayaan-1 X-ray Spectrometer: C1XS |url=http://www.sstd.rl.ac.uk/c1xs/ |publisher=[[Rutherford Appleton Laboratory]] |access-date=21 October 2008 |url-status=dead |archive-url=https://web.archive.org/web/20110716170123/http://www.sstd.rl.ac.uk/c1xs/ |archive-date=16 July 2011 }} This payload results from collaboration between Rutherford Appleton laboratory, U.K, ESA and ISRO. It was activated on 23 November 2008.{{cite news |url=https://www.sciencedaily.com/releases/2008/11/081124131241.htm |title=Chandrayaan-1 Starts Observations of the Moon |date=24 November 2008 |access-date=26 November 2008 |publisher=[[Spacedaily.com|Space Daily]]}} [112] => * '''SARA''', the '''Sub-keV Atom Reflecting Analyser''' from the [[European Space Agency|ESA]] mapped mineral composition using [[Neutral Atom Imaging|low energy neutral atoms]] emitted from the surface.{{cite journal |last1=Bhardwaj |first1=Anil |last2=Barabash |first2=Stas |last3=Futaana |first3=Yoshifumi |last4=Kazama |first4=Yoichi |last5=Asamura |first5=Kazushi |last6=McCann |first6=David |last7=Sridharan |first7=R. |last8=Holmstrom |first8=Mats |last9=Wurz |first9=Peter |last10=Lundin |first10=Rickard |title=Low energy neutral atom imaging on the Moon with the SARA instrument aboard Chandrayaan-1 mission |url=http://www.ias.ac.in/jessci/dec2005/ilc-21.pdf |journal=Journal of Earth System Science |date=December 2005 |volume=114 |issue=6 |pages=749–760 |doi=10.1007/BF02715960 |bibcode=2005JESS..114..749B |s2cid=55554166 |doi-access=free |access-date=2 November 2006 |archive-date=23 April 2021 |archive-url=https://web.archive.org/web/20210423110307/https://www.ias.ac.in/jessci/dec2005/ilc-21.pdf |url-status=live }}{{cite web |url=http://www.isro.org/chandrayaan/htmls/sara_esa.htm |title=Sub keV Atom Reflecting Analyser (SARA) |access-date=3 November 2008 |publisher=ISRO |archive-url=https://web.archive.org/web/20081022234759/http://www.isro.org/Chandrayaan/htmls/sara_esa.htm |archive-date=22 October 2008 |url-status=dead }} [113] => * '''M3''', the '''[[Moon Mineralogy Mapper]]''' from [[Brown University]] and [[JPL]] (funded by [[NASA]]) is an imaging spectrometer designed to map the surface mineral composition. It was activated on 17 December 2008.{{cite web |url=http://jpl.nasa.gov/news/news.cfm?release=2008-239 |title=NASA Instrument Inaugurates 3-D Moon Imaging |access-date=19 December 2008 |publisher=JPL |archive-date=1 January 2009 |archive-url=https://web.archive.org/web/20090101015823/http://www.jpl.nasa.gov/news/news.cfm?release=2008-239 |url-status=dead }} [114] => * '''[[SIR-2]]''', a [[Near infrared spectroscopy|near infrared spectrometer]] from ESA, built at the [[Max Planck Institute for Solar System Research]], [[Polish Academy of Science]] and [[University of Bergen]], also mapped the mineral composition using an [[Infrared spectroscopy|infrared grating spectrometer]]. The instrument is similar to that of the [[Smart-1]] SIR.{{cite journal |title=Scientific objectives and selection of targets for the SMART-2 Infrared Spectrometer (SIR) |author1=Basilevsky A. T. |author2=Keller H. U. |author3=Nathues A. |author4=Mall J. |author5=Hiesinger H. |author6=Rosiek M. |journal=Planetary |author7=Space Science |volume=52 |issue=14 |pages=1261–1285 |year=2004 |doi=10.1016/j.pss.2004.09.002 |bibcode=2004P&SS...52.1261B}}{{cite web |url=http://www.isro.org/chandrayaan/htmls/sir-2_esa.htm |title=Near-IR Spectrometer (SIR-2) |access-date=3 November 2008 |publisher=ISRO |archive-url=https://web.archive.org/web/20081022234804/http://www.isro.org/Chandrayaan/htmls/sir-2_esa.htm |archive-date=22 October 2008 |url-status=dead }} It was activated on 19 November 2008 and scientific observations were started on 20 November 2008. [115] => * '''Mini-SAR''', designed, built and tested for NASA by a large team that includes the Naval Air Warfare Center, [[Applied Physics Laboratory|Johns Hopkins University Applied Physics Laboratory]], [[Sandia National Laboratories]], [[Raytheon]] and [[Northrop Grumman]], with outer support from ISRO. [[Mini-RF|Mini-SAR]] is the active [[Synthetic Aperture Radar]] system to search for lunar polar ice and water ice. The instrument transmitted right [[Polarization (waves)|polarised]] radiation with a frequency of 2.5 GHz and monitored scattered left and right polarised radiation. The [[Fresnel reflectivity]] and the circular polarisation ratio (CPR) are the key parameters deduced from these measurements. Ice shows the Coherent Backscatter Opposition Effect, which results in an enhancement of reflections and CPR so that the water content of the Moon's polar regions can be estimated.{{cite journal |title=mini-SAR: An Imaging Radar for the Chandrayaan 1 Mission to the Moon |author1=P. D. Spudis |author2=B. Bussey |author3=C. Lichtenberg |author4=B. Marinelli |author5=S. Nozette |year=2005 |journal=Lunar and Planetary Science |volume=26 |page=1153}}{{cite web |url=http://www.isro.org/chandrayaan/htmls/minisar_nasa.htm |title=Miniature Synthetic Aperture Radar (Mini-SAR) |access-date=3 November 2008 |publisher=ISRO |archive-url=https://web.archive.org/web/20081106132830/http://www.isro.org/Chandrayaan/htmls/minisar_nasa.htm |archive-date=6 November 2008 |url-status=dead }}{{cite news |url=http://www.nasa.gov/mission_pages/Mini-RF/news/radar_tandem_searches.html |title=Nasa Radar Tandem Searches For Ice on the Moon |publisher=NASA |access-date=26 March 2012 |archive-date=5 April 2012 |archive-url=https://web.archive.org/web/20120405012806/http://www.nasa.gov/mission_pages/Mini-RF/news/radar_tandem_searches.html |url-status=live }} [116] => * '''[[RADOM-7]]''', '''Radiation Dose Monitor Experiment''' from the [[Bulgarian Academy of Sciences]] mapped the radiation environment around the Moon.{{cite web |url=http://www.isro.org/chandrayaan/htmls/radom_bas.htm |title=Radiation Dose Monitor Experiment (RADOM ) |access-date=3 November 2008 |publisher=ISRO |url-status=dead |archive-url=https://web.archive.org/web/20120119044239/http://www.isro.org/chandrayaan/htmls/radom_bas.htm |archive-date=19 January 2012 }} It was tested on 16 November 2008. [117] => [118] => == Mission timeline == [119] => [[File:PSLV-C11 launch2.jpg|thumb|PSLV C11 carrying Chandrayaan-1]] [120] => During the tenure of Prime Minister Manmohan Singh, the Chandrayaan project got a boost and finally Chandrayaan-1 was launched on 22 October 2008 at 00:52 UTC from [[Satish Dhawan Space Centre]] using the ISRO's {{convert|44.4|m|ft|adj=on}} tall, four-stage [[Polar Satellite Launch Vehicle|PSLV]] C11 launch vehicle.{{Cite web|url=https://www.isro.gov.in/Spacecraft/chandrayaan-1|title=Chandrayaan-1 – ISRO|website=www.isro.gov.in|access-date=23 August 2019|archive-date=8 July 2019|archive-url=https://web.archive.org/web/20190708043347/https://www.isro.gov.in/Spacecraft/chandrayaan-1|url-status=dead}} Chandrayaan-1 was sent to the Moon in a series of orbit-increasing manoeuvres around the Earth over a period of 21 days as opposed to launching the craft on a direct trajectory to the Moon.{{cite news |url=http://www.hindu.com/seta/2008/10/30/stories/2008103050121400.htm |archive-url=https://web.archive.org/web/20081101113151/http://www.hindu.com/seta/2008/10/30/stories/2008103050121400.htm |url-status=dead |archive-date=1 November 2008 |title=How Chandrayaan-1 is raised to higher orbits |date=30 October 2008 |access-date=31 October 2008 |work=[[The Hindu]]}} At launch the spacecraft was inserted into [[geostationary transfer orbit]] (GTO) with an [[apogee]] of {{convert|22860|km|mi|abbr=on}} and a [[perigee]] of {{convert|255|km|mi|abbr=on}}. The apogee was increased with a series of five orbit burns conducted over a period of 13 days after launch. [121] => [122] => For the duration of the mission, ISRO's telemetry, tracking and command network ([[Indian Space Research Organisation Telemetry, Tracking and Command Network|ISTRAC]]) at [[Peenya]] in [[Bangalore]], tracked and controlled Chandrayaan-1.{{cite news |url=http://www.indianexpress.com/news/chandrayaani-successfully-put-into-earths-orbit/376522/ |title=Chandrayaan-1 successfully put into earth's orbit |date=22 October 2008 |access-date=22 October 2008 |work=Indian express |archive-date=24 August 2023 |archive-url=https://web.archive.org/web/20230824114217/https://indianexpress.com/article/news-archive/chandrayaan-i-successfully-put-into-earths-orbit/ |url-status=live }} Scientists from India, Europe, and the U.S. conducted a high-level review of Chandrayaan-1 on 29 January 2009 after the spacecraft completed its first 100 days in space.{{cite news |url=http://timesofindia.indiatimes.com/india/100-days-of-Chandrayaan-1-launch/articleshow/4012996.cms |title=100 days of Chandrayaan-1 launch |work=The Times of India |agency=Times News Network |date=22 January 2009 |access-date=8 August 2017 |archive-date=24 August 2023 |archive-url=https://web.archive.org/web/20230824114205/https://timesofindia.indiatimes.com/india/100-days-of-Chandrayaan-1-launch/articleshow/4012996.cms |url-status=live }} [123] => [124] => === Earth orbit burns === [125] => {| border="1" class="wikitable floatright" [126] => |+ Earth orbit burns [127] => ! Date (UTC) [128] => ! Burn time
(minutes) [129] => ! Resulting
apogee [130] => |- [131] => ! 22 October
Launch [132] => | 18.2
in four stages [133] => | 22,860 km [134] => |- [135] => ! 23 October [136] => | 18 [137] => | 37,900 km [138] => |- [139] => ! 25 October [140] => | 16 [141] => | 74,715 km [142] => |- [143] => ! 26 October [144] => | 9.5 [145] => | 164,600 km [146] => |- [147] => ! 29 October [148] => | 3 [149] => | 267,000 km [150] => |- [151] => ! 4 November [152] => | 2.5 [153] => | 380,000 km [154] => |} [155] => ;First orbit burn [156] => The first orbit-raising manoeuvre of the Chandrayaan-1 spacecraft was performed at 03:30  UTC on 23 October 2008 when the spacecraft's 440 Newton liquid engine was fired for about 18 minutes by commanding the spacecraft from Spacecraft Control Centre (SCC) at ISRO Telemetry, Tracking and Command Network (ISTRAC) at Peenya, Bangalore. With this Chandrayaan-1's apogee was raised to {{convert|37900|km|mi|abbr=on}}, and its perigee to {{convert|305|km|mi|abbr=on}}. In this orbit, the Chandrayaan-1 spacecraft took about 11 hours to go around the Earth once.{{cite web |url=http://www.isro.gov.in/update/23-oct-2008/chandrayaan-1-spacecrafts-orbit-raised |title=Chandrayaan-1 Spacecraft's Orbit Raised |publisher=Indian Space Research Organisation |date=23 October 2008 |access-date=8 August 2017 |archive-date=9 August 2017 |archive-url=https://web.archive.org/web/20170809092154/http://www.isro.gov.in/update/23-oct-2008/chandrayaan-1-spacecrafts-orbit-raised |url-status=dead }} [157] => [158] => ;Second orbit burn [159] => The second orbit-raising manoeuvre of Chandrayaan-1 spacecraft was carried out on 25 October 2008 at 00:18 UTC when the spacecraft's engine was fired for about 16 minutes, raising its apogee to {{convert|74715|km|mi|abbr=on}}, and its perigee to {{convert|336|km|mi|abbr=on}}, thus completing 20 percent of its journey. In this orbit, Chandrayaan-1 spacecraft took about twenty-five and a half hours to go round the Earth once. This was the first time an Indian spacecraft went beyond the {{convert|36000|km|mi|abbr=on}} high geostationary orbit and reached an altitude more than twice that height.{{cite web |url=http://www.isro.gov.in/pressrelease/scripts/pressreleasein.aspx?Oct25a_2008 |title=Chandrayaan-1 Spacecraft's Orbit Raised Further |access-date=30 October 2008 |publisher=ISRO |archive-url=https://web.archive.org/web/20090827095016/http://isro.gov.in/pressrelease/scripts/pressreleasein.aspx?Oct25a_2008 |archive-date=27 August 2009 |url-status=dead }} [160] => [161] => ;Third orbit burn [162] => The third orbit raising manoeuvre was initiated on 26 October 2008 at 01:38 UTC when the spacecraft's engine was fired for about nine and a half minutes. With this its apogee was raised to {{convert|164600|km|mi|abbr=on}}, and the perigee to {{convert|348|km|mi|abbr=on}}. In this orbit, Chandrayaan-1 took about 73 hours to go around the Earth once.{{cite web |url=http://www.isro.gov.in/pressrelease/scripts/pressreleasein.aspx?Oct26_2008 |title=Chandrayaan-1 enters Deep Space |access-date=30 October 2008 |publisher=ISRO |archive-url=https://web.archive.org/web/20090827080951/http://isro.gov.in/pressrelease/scripts/pressreleasein.aspx?Oct26_2008 |archive-date=27 August 2009 |url-status=dead }} [163] => [164] => ;Fourth orbit burn [165] => The fourth orbit-raising manoeuvre took place on 29 October 2008 at 02:08 UTC when the spacecraft's engine was fired for about three minutes, raising its apogee to {{convert|267000|km|mi|abbr=on}} and the perigee to {{convert|465|km|mi|abbr=on}}. This extended its orbit to a distance more than half the way to the Moon. In this orbit, the spacecraft took about six days to go around the Earth once.{{cite web |url=http://www.isro.gov.in/pressrelease/scripts/pressreleasein.aspx?Oct29_2008 |title=Chandrayaan-1's orbit closer to Moon |access-date=30 October 2008 |publisher=ISRO |archive-url=https://web.archive.org/web/20090827072516/http://isro.gov.in/pressrelease/scripts/pressreleasein.aspx?Oct29_2008 |archive-date=27 August 2009 |url-status=dead }} [166] => [167] => ;Final orbit burn [168] => The fifth and final orbit raising manoeuvre was carried out on 3 November 2008 at 23:26 UTC when the spacecraft's engine was fired for about two and a half minutes resulting in Chandrayaan-1 entering the [[Trans Lunar Injection|Lunar Transfer Trajectory]] with an apogee of about {{convert|380000|km|mi|abbr=on}}.{{cite web |url=http://www.isro.gov.in/pressrelease/scripts/pressreleasein.aspx?Nov04_2008 |title=Chandrayaan-1 enters Lunar Transfer Trajectory |access-date=4 November 2008 |publisher=ISRO |archive-url=https://web.archive.org/web/20090827090227/http://isro.gov.in/pressrelease/scripts/pressreleasein.aspx?Nov04_2008 |archive-date=27 August 2009 |url-status=dead }} [169] => [170] => === Lunar orbit insertion === [171] => {| border="1" class="wikitable floatright" [172] => |+ Lunar orbit insertion [173] => ! Date (UTC) [174] => ! Burn time
(seconds) [175] => ! Resulting
periselene [176] => ! Resulting
aposelene [177] => |- [178] => ! 8 November [179] => | 817 [180] => | 504 km [181] => | 7,502 km [182] => |- [183] => ! 9 November [184] => | 57 [185] => | 200 km [186] => | 7,502 km [187] => |- [188] => ! 10 November [189] => | 866 [190] => | 187 km [191] => | 255 km [192] => |- [193] => ! 11 November [194] => | 31 [195] => | 101 km [196] => | 255 km [197] => |- [198] => ! 12 November
Final orbit [199] => | [200] => | 100 km [201] => | 100 km [202] => |} [203] => Chandrayaan-1 completed the [[Lunar Orbit Insertion|lunar orbit insertion]] operation on 8 November 2008 at 11:21 UTC. This manoeuvre involved firing of the liquid engine for 817 seconds (about thirteen and half minutes) when the spacecraft passed within {{convert|500|km|mi|abbr=on}} from the Moon. The satellite was placed in an elliptical orbit that passed over the polar regions of the Moon, with {{convert|7502|km|mi|abbr=on}} [[apsis|aposelene]] and {{convert|504|km|mi|abbr=on}} [[apsis|periselene]]. The orbital period was estimated to be around 11 hours. With the successful completion of this operation, India became the fifth nation to put a vehicle in lunar orbit.{{cite web|url=http://www.isro.gov.in/pressrelease/scripts/pressreleasein.aspx?Nov08_2008|title=Chandrayaan-1 Successfully Enters Lunar Orbit|publisher=ISRO|archive-url=https://web.archive.org/web/20140630200638/http://isro.gov.in/pressrelease/scripts/pressreleasein.aspx?Nov08_2008|archive-date=30 June 2014|access-date=8 November 2008}} [204] => [205] => ;First orbit reduction [206] => First Lunar Orbit Reduction Manoeuvre of Chandrayaan-1 was carried out on 9 November 2008 at 14:33 UTC. During this, the engine of the spacecraft was fired for about 57 seconds. This reduced the [[periselene]] to {{convert|200|km|mi|0|abbr=on}} while [[aposelene]] remained unchanged at 7,502 km. In this elliptical orbit, Chandrayaan-1 took about ten and a half hours to circle the Moon once.{{cite web |url=http://www.isro.gov.in/pressrelease/scripts/pressreleasein.aspx?Nov10_2008 |title=First Lunar Orbit Reduction Manoeuvre of Chandrayaan-1 Successfully Carried Out |access-date=10 November 2008 |publisher=ISRO |archive-url=https://web.archive.org/web/20090928065216/http://isro.gov.in/pressrelease/scripts/pressreleasein.aspx?Nov10_2008 |archive-date=28 September 2009 |url-status=dead }} [207] => [208] => ;Second orbit reduction [209] => This manoeuvre was carried out on 10 November 2008 at 16:28 UTC, resulting in a steep decrease in Chandrayaan-1's aposelene to {{convert|255|km|mi|abbr=on}} and its periselene to {{convert|187|km|mi|abbr=on}}, During this manoeuvre, the engine was fired for about 866 seconds (about fourteen and a half minutes). Chandrayaan-1 took two hours and 16 minutes to go around the Moon once in this orbit.{{cite news |url=http://www.hindu.com/2008/11/11/stories/2008111158200100.htm |archive-url=https://web.archive.org/web/20081216101854/http://www.hindu.com/2008/11/11/stories/2008111158200100.htm |url-status=dead |archive-date=16 December 2008 |title=Now, one step closer to Moon |access-date=10 November 2008 |work=[[The Hindu]] |date=11 November 2008}} [210] => [211] => ;Third orbit reduction [212] => Third Lunar Orbit Reduction was carried out by firing the onboard engine for 31 seconds on 11 November 2008 at 13:00 UTC. This reduced the periselene to {{convert|101|km|mi|abbr=on}}, while the aposelene remained constant at 255 km. In this orbit Chandrayaan-1 took two hours and 9 minutes to go around the Moon once.{{cite news |url=http://www.hindu.com/2008/11/12/stories/2008111261331200.htm |archive-url=https://web.archive.org/web/20081216112804/http://www.hindu.com/2008/11/12/stories/2008111261331200.htm |url-status=dead |archive-date=16 December 2008 |title=Chandrayaan's orbit further reduced |access-date=11 November 2008 |work=[[The Hindu]] |date=12 November 2008}} [213] => [214] => ;Final orbit [215] => Chandrayaan-1 spacecraft was placed into a mission-specific lunar polar orbit of {{convert|100|km|mi|0|abbr=on}} above the lunar surface on 12 November 2008.{{cite web |author=Jonathan McDowell |url=http://host.planet4589.org/space/jsr/back/news.603 |title=Jonathan's Space Report No. 603 |work=[[Jonathan's Space Report]] |date=15 November 2008 |access-date=16 November 2008 |archive-url=https://web.archive.org/web/20180910024216/http://host.planet4589.org/space/jsr/back/news.603 |archive-date=10 September 2018 |url-status=dead }}{{cite web |url=http://www.isro.gov.in/pressrelease/scripts/pressreleasein.aspx?Nov12_2008 |title=Chandrayaan-1 Successfully Reaches its Operational Lunar Orbit |access-date=12 November 2008 |publisher=ISRO |archive-url=https://web.archive.org/web/20090827100002/http://isro.gov.in/pressrelease/scripts/pressreleasein.aspx?Nov12_2008 |archive-date=27 August 2009 |url-status=dead }} In the final orbit reduction manoeuvre, Chandrayaan-1's aposelene and periselene were both reduced to 100 km. In this orbit, Chandrayaan-1 takes about two hours to go around the Moon once. Two of the 11 payloads—the Terrain Mapping Camera (TMC) and the Radiation Dose Monitor (RADOM)—were switched on. The TMC acquired images of both the Earth and the Moon. [216] => [217] => === Impact of the MIP on the lunar surface === [218] => The [[Moon Impact Probe]] (MIP) crash-[[Moon landing|landed]] on the lunar surface on 14 November 2008, 15:01 UTC near the crater [[Shackleton (crater)|Shackleton]] at the south pole. The MIP was one of eleven scientific instruments (payloads) on board Chandrayaan-1.{{cite news |url=http://articles.timesofindia.indiatimes.com/2008-11-15/india/27904216_1_lunar-surface-moon-impact-probe-chandrayaan |archive-url=https://web.archive.org/web/20121022074629/http://articles.timesofindia.indiatimes.com/2008-11-15/india/27904216_1_lunar-surface-moon-impact-probe-chandrayaan |url-status=dead |archive-date=22 October 2012 |title=Chandrayaan-I Impact Probe lands on the Moon |access-date=14 November 2008 |first1=Srinivas |last1=Laxman |work=[[The Times of India]] |date=15 November 2008}} [219] => [220] => The MIP separated from Chandrayaan at 100 km from lunar surface and began its nosedive at 14:36 UTC. going into free fall for thirty minutes. As it fell, it kept sending information back to the mother satellite which, in turn, beamed the information back to Earth. The altimeter then also began recording measurements to prepare for a rover to land on the lunar surface during a second Moon mission.{{cite news |url=http://www.ummid.com/news/2013/August/18.08.2013/india-moon-mission.html |title=India to go alone in second Moon mission |date=18 August 2013 |work=UMMID |access-date=15 September 2013 |archive-date=24 August 2023 |archive-url=https://web.archive.org/web/20230824114207/https://ummid.com/news/2013/August/18.08.2013/india-moon-mission.html |url-status=live }} [221] => [222] => Following the deployment of the MIP, the other scientific instruments were turned on, starting the next phase of the mission. [223] => [224] => After scientific analyses of the received data from the MIP, the Indian Space Research Organisation confirmed the presence of water in the lunar soil and published the finding in a press conference addressed by its then Chairman [[G. Madhavan Nair]]. [225] => [226] => === Rise of spacecraft's temperature === [227] => ISRO had reported on 25 November 2008 that Chandrayaan-1's temperature had risen above normal to {{convert|50|C|F}},{{cite news |url=http://news.bbc.co.uk/2/hi/south_asia/7748611.stm |title=India moon craft hit by heat rise |work=BBC News |first=Swaminathan |last=Natarajan |date=25 November 2008 |access-date=28 November 2008 |archive-date=24 August 2023 |archive-url=https://web.archive.org/web/20230824114249/http://news.bbc.co.uk/2/hi/south_asia/7748611.stm |url-status=live }} Scientists said that it was caused by higher than expected temperatures in lunar orbit. The temperature was brought down by about {{convert|10|C-change|F-change}} by rotating the spacecraft about 20 degrees and switching off some of the instruments. Subsequently, ISRO reported on 27 November 2008 that the spacecraft was operating under normal temperature conditions.{{cite news |url=http://articles.timesofindia.indiatimes.com/2008-11-27/ahmedabad/27935978_1_chandrayaan-payloads-lunar-surface |archive-url=https://web.archive.org/web/20110811080824/http://articles.timesofindia.indiatimes.com/2008-11-27/ahmedabad/27935978_1_chandrayaan-payloads-lunar-surface |url-status=dead |archive-date=11 August 2011 |title=All fine with Chandrayaan-1: ISRO chief |date=27 November 2008 |access-date=27 November 2008 |work=[[The Times of India]]}} In subsequent reports ISRO says, since the spacecraft was still recording higher than normal temperatures, it would be running only one instrument at a time until January 2009 when lunar orbital temperature conditions are said to stabilize.{{cite news |url=http://economictimes.indiatimes.com/ET_Cetera/Chandrayaan-1_on_summer_break_till_Jan_/articleshow/3768291.cms |title=Chandrayaan-1 takes summer break till mid Jan |date=27 November 2008 |access-date=27 November 2008 |work=Economic Times |archive-date=24 August 2023 |archive-url=https://web.archive.org/web/20230824114213/https://economictimes.indiatimes.com/chandrayaan-1-takes-summer-break-till-mid-jan/articleshow/3768291.cms |url-status=live }} It was initially thought that the spacecraft was experiencing high temperature because of radiation from the Sun and infrared radiation reflected by the Moon.{{cite news |url=https://www.newscientist.com/article/dn16152-indian-moon-probe-feels-the-heat.html |title=Indian Moon probe feels the heat |date=27 November 2008 |access-date=27 November 2008 |publisher=New Scientist |archive-date=24 August 2023 |archive-url=https://web.archive.org/web/20230824114212/https://www.newscientist.com/article/dn16152-indian-moon-probe-feels-the-heat/ |url-status=live }} However the rise in spacecraft temperature was later attributed to a batch of [[DC-to-DC converter|DC-DC converters]] with poor thermal regulation.{{Cite web|url=https://indianexpress.com/article/india/dr-m-annadurai-project-director-chandrayaan-1-chandrayaan-2-isro-moon-5805873/|title=Dr M Annadurai, Project director, Chandrayaan 1: 'Chandrayaan 2 logical extension of what we did in first mission'|date=29 June 2019|website=The Indian Express|language=en-IN|access-date=9 July 2019|archive-date=29 June 2019|archive-url=https://web.archive.org/web/20190629180634/https://indianexpress.com/article/india/dr-m-annadurai-project-director-chandrayaan-1-chandrayaan-2-isro-moon-5805873/|url-status=live}}{{Cite news|url=https://www.thehindu.com/opinion/lead/Celebrating-Indias-moon-moment/article15788241.ece|title=Celebrating India's moon moment|last=Bagla|first=Pallava|date=22 October 2010|work=The Hindu|access-date=9 July 2019|language=en-IN|issn=0971-751X|archive-date=24 August 2023|archive-url=https://web.archive.org/web/20230824114837/https://www.thehindu.com/opinion/lead/Celebrating-Indias-moon-moment/article15788241.ece|url-status=live}} [228] => [229] => === Mapping of minerals === [230] => The mineral content on the lunar surface was mapped with the [[Moon Mineralogy Mapper]] (M3), a NASA instrument on board the orbiter. The presence of iron was reiterated and changes in rock and mineral composition have been identified. The Oriental Basin region of the Moon was mapped, and it indicates abundance of iron-bearing minerals such as [[pyroxene]].{{cite news |url=http://articles.timesofindia.indiatimes.com/2008-12-26/india/27905873_1_moon-mineralogy-mapper-chandrayaan-1-carle-pieters |archive-url=https://web.archive.org/web/20110811080837/http://articles.timesofindia.indiatimes.com/2008-12-26/india/27905873_1_moon-mineralogy-mapper-chandrayaan-1-carle-pieters |url-status=dead |archive-date=11 August 2011 |title=Chandrayaan reveals changes in rock composition |date=26 December 2008 |access-date=12 January 2009 |work=[[The Times of India]]}} [231] => [232] => In 2018 it was announced that M3 infrared data had been re-analyzed to confirm the existence of water across wide expanses of the Moon's polar regions.{{Cite news|url=https://www.nytimes.com/2018/08/22/science/ice-moon.html|title=Ice on the Surface of the Moon? Almost Certainly, New Research Shows|last=Fortin|first=Jacey|date=22 August 2018|work=[[The New York Times]]|access-date=22 August 2018|language=en|archive-date=22 August 2018|archive-url=https://web.archive.org/web/20180822091635/https://www.nytimes.com/2018/08/22/science/ice-moon.html|url-status=live}} [233] => [234] => === Mapping of Apollo landing sites === [235] => ISRO announced in January 2009 the completion of the mapping of the [[Apollo program|Apollo Moon missions]] landing sites by the orbiter, using multiple payloads. Six of the sites have been mapped, including the landing sites of [[Apollo 15]] and [[Apollo 17]].{{cite web |title=Results from Chandrayaan 1 mission |url=http://isrohq.vssc.gov.in/isr0dem0v2/index.php/science/science-history/74-general/1005-chandrayaan-1mission |website=ISRO website |access-date=23 October 2014 |archive-url=https://web.archive.org/web/20141023233203/http://isrohq.vssc.gov.in/isr0dem0v2/index.php/science/science-history/74-general/1005-chandrayaan-1mission |archive-date=23 October 2014 |url-status=dead }} [236] => [237] => === Image acquisition === [238] => The craft completed 3,000 orbits acquiring 70,000 images of the lunar surface,{{cite news |url=http://www.hindu.com/thehindu/holnus/000200907170920.htm |title=Chandrayaan sensor fails; craft's life may be reduced |access-date=17 July 2009 |work=The Hindu |date=17 July 2009 |archive-date=6 November 2012 |archive-url=https://web.archive.org/web/20121106060808/http://www.hindu.com/thehindu/holnus/000200907170920.htm |url-status=live }}{{cite web |url=http://isro.gov.in/pressrelease/scripts/pressreleasein.aspx?Jul17_2009 |title=Chandrayaan-1 spacecraft completes 3000 orbits around the Moon |access-date=18 July 2009 |publisher=ISRO |archive-url=https://web.archive.org/web/20090827084622/http://isro.gov.in/pressrelease/scripts/pressreleasein.aspx?Jul17_2009 |archive-date=27 August 2009 |url-status=dead }}{{cite news |url=http://www.hindu.com/2009/07/18/stories/2009071858970100.htm |archive-url=https://web.archive.org/web/20090723080539/http://www.hindu.com/2009/07/18/stories/2009071858970100.htm |url-status=dead |archive-date=23 July 2009 |title=Chandrayaan falters as 'star sensors' fail |access-date=18 July 2009 |work=[[The Hindu]] |date=18 July 2009}} which is quite a record compared to the lunar flights of other nations. ISRO officials estimated that if more than 40,000 images have been transmitted by Chandrayaan's cameras in 75 days, it worked out to nearly 535 images being sent daily. They were first transmitted to [[Indian Deep Space Network]] at Byalalu near Bangalore, from where they were flashed to ISRO's [[Indian Space Research Organisation Telemetry, Tracking and Command Network|Telemetry Tracking And Command Network (ISTRAC)]] at Bangalore. [239] => [240] => Some of these images have a resolution of down to {{convert|5|m|ft}}, providing a sharp and clear picture of the Moon's surface, while many images sent by some of the other missions had only a 100-metre resolution.{{Cite web|url=http://www.ufo-blogger.com/2009/01/indian-moon-mission-pictures-show.html|title=Indian Moon Mission Pictures Show Triangular Pyramid Anomaly – UFO Sighting 2019 {{pipe}} UFO News {{pipe}} UFO 2019 {{pipe}} Roswell UFO|access-date=29 November 2011|archive-date=30 November 2011|archive-url=https://web.archive.org/web/20111130063950/http://www.ufo-blogger.com/2009/01/indian-moon-mission-pictures-show.html|url-status=dead}} For comparison, the Lunar Reconnaissance Orbiter Camera has a 0.5 meter resolution.{{Cite web|url=http://lroc.sese.asu.edu/about|title=About | Lunar Reconnaissance Orbiter Camera|website=lroc.sese.asu.edu|access-date=10 May 2020|archive-date=10 May 2020|archive-url=https://web.archive.org/web/20200510080015/http://lroc.sese.asu.edu/about|url-status=live}} [241] => [242] => On 26 November, the indigenous Terrain Mapping Camera, which was first activated on 29 October 2008, acquired images of peaks and craters. This came as a surprise to ISRO officials because the Moon consists mostly of craters.{{cite news |url=http://timesofindia.indiatimes.com/Cities/Ahmedabad/Chandrayaan_beams_back_40000_images_in_75_days/rssarticleshow/3979496.cms |title=Chandrayaan beams back 40,000 images in 75 days |date=15 January 2009 |access-date=16 January 2009 |publisher=Times of India |first1=Srinivas |last1=Laxman |archive-date=12 February 2009 |archive-url=https://web.archive.org/web/20090212123454/http://timesofindia.indiatimes.com/Cities/Ahmedabad/Chandrayaan_beams_back_40000_images_in_75_days/rssarticleshow/3979496.cms |url-status=live }} [243] => [244] => === Detection of X-Ray signals === [245] => The [[X-ray]] signatures of aluminium, [[magnesium]] and [[silicon]] were picked up by the C1XS X-ray camera. The signals were picked up during a [[solar flare]] that caused an [[X-ray fluorescence]] phenomenon. The flare that caused the fluorescence was within the lowest C1XS sensitivity range.{{cite news |url=http://www.isro.gov.in/pressrelease/scripts/pressreleasein.aspx?Jan23_2009 |title=C1XS Catches First Glimpse of X-rays from the Moon |date=23 January 2009 |access-date=16 February 2009 |publisher=ISRO |archive-url=https://web.archive.org/web/20090926155815/http://isro.gov.in/pressrelease/scripts/pressreleasein.aspx?Jan23_2009 |archive-date=26 September 2009 |url-status=dead }}{{cite news |url=http://www.hindu.com/2009/01/24/stories/2009012454901100.htm |archive-url=https://web.archive.org/web/20090126225635/http://hindu.com/2009/01/24/stories/2009012454901100.htm |url-status=dead |archive-date=26 January 2009 |title=Chandrayaan detects X-ray signals |date=24 January 2009 |work=[[The Hindu]] |access-date=25 January 2009 }}{{cite news |url=http://www.universetoday.com/24062/chandrayaan-1-instrument-detects-first-x-ray-signature-from-moon/ |title=Chandrayaan-1 Instrument Detects First X-ray Signature from Moon |date=23 January 2009 |access-date=25 January 2009 |publisher=Universe Today |archive-date=8 June 2011 |archive-url=https://web.archive.org/web/20110608000126/http://www.universetoday.com/24062/chandrayaan-1-instrument-detects-first-x-ray-signature-from-moon/ |url-status=live }} [246] => [247] => === Full Earth image === [248] => [[File:Looking Homeward (3003323872).jpg|thumb|An image of the Earth taken by Chandrayaan-1]] [249] => On 25 March 2009 Chandrayaan beamed back its first images of the Earth in its entirety. These images were taken with the TMC. Previous imaging was done on only one part of the Earth. The new images show Asia, parts of Africa and Australia with India being in the centre.{{cite news |url=http://www.thehindu.com/todays-paper/Chandrayaanrsquos-first-image-of-Earth-in-its-entirety/article16613390.ece |title=Chandrayaan's first image of Earth in its entirety |work=The Hindu |first=Divya |last=Gandhi |date=11 April 2009 |access-date=12 March 2017 |archive-date=30 July 2020 |archive-url=https://web.archive.org/web/20200730111234/https://www.thehindu.com/todays-paper/Chandrayaanrsquos-first-image-of-Earth-in-its-entirety/article16613390.ece |url-status=live }}{{cite web |url=http://www.planetary.org/multimedia/space-images/earth/tmc11_L0L1_01654_3_Subsampled-2m_cropped.html |title=Image of Earth from Chandrayaan-1 |publisher=The Planetary Society |date=25 March 2009 |access-date=12 March 2017 |archive-date=13 March 2017 |archive-url=https://web.archive.org/web/20170313130940/http://www.planetary.org/multimedia/space-images/earth/tmc11_L0L1_01654_3_Subsampled-2m_cropped.html |url-status=live }} [250] => [251] => === Orbit raised to 200 km === [252] => After the completion of all the major mission objectives, the orbit of Chandrayaan-1 spacecraft, which had been at a height of {{convert|100|km|mi|0|abbr=on}} from the lunar surface since November 2008, was raised to {{convert|200|km|mi|0|abbr=on}}. The orbit-raising manoeuvres were carried out between 03:30 and 04:30  UTC on 19 May 2009. The spacecraft at this higher altitude enabled further studies on orbit perturbations and gravitational field variation of the Moon and also enabled imaging of the lunar surface with a wider swath.{{cite web |url=http://www.isro.gov.in/pressrelease/scripts/pressreleasein.aspx?May20_2009 |title=The Orbit of Chandrayaan-1 Raised |access-date=21 May 2009 |publisher=ISRO |archive-url=https://web.archive.org/web/20090817050543/http://www.isro.gov.in/pressrelease/scripts/pressreleasein.aspx?May20_2009 |archive-date=17 August 2009 |url-status=dead }} It was later revealed that the true reason for the orbit change was that it was an attempt to keep the temperature of the probe down.[https://www.newscientist.com/article/mg20327253.500-moons-heat-hastened-indian-probes-demise.html "Moon's heat hastened Indian probe's demise"] {{Webarchive|url=https://web.archive.org/web/20150512043334/http://www.newscientist.com/article/mg20327253.500-moons-heat-hastened-indian-probes-demise.html |date=12 May 2015 }}, New Scientist, 12 September 2009, p. 5. It was "...assumed that the temperature [of the spacecraft subsystems] at 100 km above the Moon's surface would be around 75 degrees Celsius. However, it was more than 75 degrees and problems started to surface. We had to raise the orbit to 200 km."{{cite news |last=Pereira |first=Andrew |title=Chandrayaan-I was 'killed' by heat stroke |url=http://articles.timesofindia.indiatimes.com/2009-09-07/india/28066525_1_chandrayaan-1-lunar-surface-scientific-goals |archive-url=https://web.archive.org/web/20110811080919/http://articles.timesofindia.indiatimes.com/2009-09-07/india/28066525_1_chandrayaan-1-lunar-surface-scientific-goals |url-status=dead |archive-date=11 August 2011 |access-date=13 March 2012 |newspaper=[[The Times of India]] |date=7 September 2009}} [253] => [254] => === Attitude sensor failure === [255] => The [[star tracker]], a device used for pointing [[Spacecraft attitude control|attitude]] determination (orientation), failed in orbit after nine months of operation. Afterward, the orientation of Chandrayaan was determined using a back-up procedure using a two-axis Sun sensor and taking a bearing from an Earth station. This was used to update three axis [[gyroscope]]s which enabled spacecraft operations. The second failure, detected on 16 May, was attributed to excessive radiation from the Sun.{{cite news |url=http://www.hindu.com/2009/07/19/stories/2009071958920900.htm |archive-url=https://web.archive.org/web/20090722074303/http://www.hindu.com/2009/07/19/stories/2009071958920900.htm |url-status=dead |archive-date=22 July 2009 |title=Chandrayaan's first sensor failed much earlier |access-date=19 July 2009 |work=[[The Hindu]] |date=19 July 2009}} [256] => [257] => === Radar scans === [258] => On 21 August 2009 Chandrayaan-1 along with the [[Lunar Reconnaissance Orbiter]] attempted to perform a [[bistatic radar]] experiment using their [[Mini-RF|Mini-SAR]] radars to detect the presence of [[Lunar water|water ice on the lunar surface]].{{cite news |url=http://www.nasa.gov/mission_pages/Mini-RF/news/tandem_search.html |title=NASA And ISRO Satellites Perform In Tandem To Search For Ice on the Moon |publisher=NASA |access-date=22 August 2009 |archive-date=28 December 2018 |archive-url=https://web.archive.org/web/20181228213937/https://www.nasa.gov/mission_pages/Mini-RF/news/tandem_search.html |url-status=live }}{{cite news |url=http://isro.org/pressrelease/scripts/pressreleasein.aspx?Aug21_2009 |title=ISRO-NASA Joint Experiment To Search for Water Ice on the Moon |date=21 August 2009 |publisher=ISRO |access-date=22 August 2009 |url-status=dead |archive-url=https://web.archive.org/web/20090901112837/http://www.isro.org/pressrelease/scripts/pressreleasein.aspx?Aug21_2009 |archive-date=1 September 2009 }} The attempt was a failure; it turned out the Chandrayaan-1 radar was not pointed at the Moon during the experiment.{{cite news |first=Nancy |last=Atkinson |title=Joint Experiment with Chandrayaan-1 and LRO Failed |date=11 September 2011 |url=http://www.universetoday.com/39811/anticipated-joint-experiment-with-chandrayaan-1-and-lro-failed/ |work=Universe Today |access-date=26 March 2012 |archive-date=28 December 2018 |archive-url=https://web.archive.org/web/20181228214029/https://www.universetoday.com/39811/anticipated-joint-experiment-with-chandrayaan-1-and-lro-failed/ |url-status=live }} [259] => [260] => The Mini-SAR has imaged many of the permanently shadowed regions that exist at both poles of the Moon.{{cite news |title=NASA Radar Finds Ice Deposits at Moon's North Pole |date=March 2010 |url=http://www.nasa.gov/mission_pages/Mini-RF/multimedia/feature_ice_like_deposits.html |work=[[NASA]] |access-date=26 March 2012 |archive-date=21 September 2015 |archive-url=https://web.archive.org/web/20150921013327/http://www.nasa.gov/mission_pages/Mini-RF/multimedia/feature_ice_like_deposits.html |url-status=live }} In March 2010, it was reported that the Mini-SAR on board the Chandrayaan-1 had discovered more than 40 permanently darkened craters near the Moon's north pole which are hypothesized to contain an estimated 600 million metric tonnes of water-ice.[http://news.bbc.co.uk/1/hi/sci/tech/8544635.stm "Ice deposits found at Moon's pole"] {{Webarchive|url=https://web.archive.org/web/20170814221438/http://news.bbc.co.uk/1/hi/sci/tech/8544635.stm |date=14 August 2017 }}, BBC News, 2 March 2010 The radar's high CPR is not uniquely diagnostic of either roughness or ice; the science team must take into account the environment of the occurrences of high CPR signal to interpret its cause. The ice must be relatively pure and at least a couple of meters thick to give this signature. The estimated amount of water ice potentially present is comparable to the quantity estimated from the previous mission of [[Lunar Prospector]]'s neutron data. [261] => [262] => Although the results are consistent with recent findings of other NASA instruments onboard Chandrayaan-1 (the Moon Mineralogy Mapper (MP3) discovered water molecules in the Moon's polar regions, while water vapour was detected by NASA's [[Lunar Crater Observation and Sensing Satellite]], or LCROSS) this observation is not consistent with the presence of thick deposits of nearly pure water ice within a few meters of the lunar surface, but it does not rule out the presence of small (<~10 cm), discrete pieces of ice mixed in with the regolith.{{cite journal |title=The nature of lunar volatiles as revealed by Mini-RF observations of the LCROSS impact site |journal=Journal of Geophysical Research: Planets |date=13 January 2011 |first=C. D. Neish |last=D. B. J. Bussey |author2=P. Spudis |author3=W. Marshall |author4=B. J. Thomson |author5=G. W. Patterson |author6=L. M. Carter |volume=116 |issue=E01005 |pages=8 |quote=the Mini-RF instruments on ISRO's Chandrayaan-1 and NASA's Lunar Reconnaissance Orbiter (LRO) obtained S band (12.6 cm) synthetic aperture radar images of the impact site at 150 and 30 m resolution, respectively. These observations show that the floor of Cabeus has a circular polarization ratio (CPR) comparable to or less than the average of nearby terrain in the southern lunar highlands. Furthermore, <2% of the pixels in Cabeus crater have CPR values greater than unity. This observation is not consistent with presence of thick deposits of nearly pure water ice within a few meters of lunar surface, but it does not rule out the presence of small (<~10 cm), discrete pieces of ice mixed in with the regolith. |doi=10.1029/2010JE003647 |bibcode=2011JGRE..116.1005N |doi-access=}} [263] => [264] => == End of the mission == [265] => The mission was launched on 22 October 2008 and expected to operate for two years. However, around 20:00 UTC on 28 August 2009 communication with the spacecraft was suddenly lost. The probe had operated for 312 days. The craft had been expected to remain in orbit for approximately another 1000 days and to crash into the lunar surface in late 2012,[http://articles.economictimes.indiatimes.com/2009-09-01/news/27634980_1_chandrayaan-1-chandrayaan-2-lunar-surface Chandrayaan-1 off radar, but will work for 1000 days] {{Webarchive|url=https://web.archive.org/web/20141006130531/http://articles.economictimes.indiatimes.com/2009-09-01/news/27634980_1_chandrayaan-1-chandrayaan-2-lunar-surface |date=6 October 2014 }}. ''The Economic Times'' 21 September 2009. although in 2016 it was found to still be in orbit. [266] => [267] => A member of the science advisory board of Chandrayaan-1 said that it is difficult to ascertain reasons for the loss of contact.{{Cite web |url=http://www.satellitetoday.com/st/headlines/ISRO-Loses-Chandrayaan-1_31940.html |title=ISRO Loses Chandrayaan-1 |access-date=1 September 2009 |archive-date=16 July 2011 |archive-url=https://web.archive.org/web/20110716011220/http://www.satellitetoday.com/st/headlines/ISRO-Loses-Chandrayaan-1_31940.html |url-status=dead }} ISRO Chairman Madhavan Nair said that due to very high [[solar radiation|radiation]], power-supply units controlling both the computer systems on board failed, snapping the communication connectivity.[https://web.archive.org/web/20090902100254/http://www.hindu.com/2009/08/31/stories/2009083157910100.htm Chandrayaan-1 mission terminated] The Hindu. 31 August 2009. However, information released later showed that the power supply supplied by MDI failed due to overheating.[http://www.thehindubusinessline.com/2010/07/10/stories/2010071052090100.htm Power supply glitch partially cripples Insat-4B] {{Webarchive|url=https://web.archive.org/web/20100713081005/http://www.thehindubusinessline.com/2010/07/10/stories/2010071052090100.htm |date=13 July 2010 }}, ''HinduBusiness Line,'' Retrieved 13 July 2010. [268] => [269] => Although the mission was less than 10 months in duration, and less than half the intended two years in length,{{Cite web|url=http://www.techtree.com/India/News/Chandrayaan_1_Mission_Officially_Terminated/551-105927-547.html|archiveurl=https://web.archive.org/web/20110813213111/http://www.techtree.com/India/News/Chandrayaan_1_Mission_Officially_Terminated/551-105927-547.html|url-status=dead|title=Chandrayaan 1 Mission Terminated|archivedate=13 August 2011}} a review by scientists termed the mission successful, as it had completed 95% of its primary objectives. [270] => [271] => == Results == [272] => {{more citations needed|section|date=October 2017}} [273] => Chandrayaan's [[NASA]] Instrument [[Moon Mineralogy Mapper]] has confirmed the magma ocean hypothesis, meaning that the Moon was once completely molten.{{cite news |url=http://economictimes.indiatimes.com/News/News-By-Industry/Chandrayaan-confirms-moon-was-once-completely-molten-Scientist/articleshow/4963591.cms |title=Chandrayaan confirms Moon was once completely molten: Scientist |date=2 September 2009 |access-date=26 September 2009 |work=Economic Times |archive-url=https://web.archive.org/web/20090906013609/http://economictimes.indiatimes.com/News/News-By-Industry/Chandrayaan-confirms-moon-was-once-completely-molten-Scientist/articleshow/4963591.cms |archive-date=6 September 2009 |url-status=dead }} [274] => [275] => The terrain mapping camera on board Chandrayaan-1, besides producing more than 70,000 three dimensional images, has recorded images of the landing site of U.S. spacecraft Apollo 15.{{cite news |url=http://www.moondaily.com/reports/Scientist_Rubbishes_Apollo_15_Conspiracy_Theory_999.html |title=Scientist Rubbishes Apollo 15 Conspiracy Theory |date=4 September 2009 |access-date=26 September 2009 |publisher=Moondaily.com |archive-url=https://web.archive.org/web/20090908010233/http://www.moondaily.com/reports/Scientist_Rubbishes_Apollo_15_Conspiracy_Theory_999.html |archive-date=8 September 2009 |url-status=dead }}{{cite news |url=http://articles.timesofindia.indiatimes.com/2009-09-02/india/28083351_1_chandrayaan-1-lunar-mission-lunar-reconnaissance-orbiter |archive-url=https://web.archive.org/web/20110811080929/http://articles.timesofindia.indiatimes.com/2009-09-02/india/28083351_1_chandrayaan-1-lunar-mission-lunar-reconnaissance-orbiter |url-status=dead |archive-date=11 August 2011 |title=Chandrayaan sends images of Apollo 15 landing |date=2 September 2009 |access-date=26 September 2009 |work=[[The Times of India]]}} [276] => [277] => TMC and HySI payloads of ISRO have covered about 70% of the lunar surface, while M3 covered more than 95% of the same and SIR-2 has provided high-resolution spectral data on the mineralogy of the Moon. [278] => [279] => Indian Space Research Organisation said interesting data on lunar polar areas was provided by Lunar Laser Ranging Instrument (LLRI) and High Energy X-ray Spectrometer (HEX) of ISRO as well as Miniature Synthetic Aperture Radar (Mini-SAR) of the US. [280] => [281] => LLRI covered both the lunar poles and additional lunar regions of interest, HEX made about 200 orbits over the lunar poles and Mini-SAR provided complete coverage of both North and South Polar Regions of the Moon. [282] => [283] => Another ESA payload – Chandrayaan-1 imaging X-ray Spectrometer (C1XS) – detected more than two dozen weak solar flares during the mission duration. The Bulgarian payload called Radiation Dose Monitor (RADOM) was activated on the day of the launch itself and worked until the mission's end. [284] => [285] => ISRO said scientists from India and participating agencies expressed satisfaction on the performance of Chandrayaan-1 mission as well as the high quality of data sent by the spacecraft. [286] => [287] => They have started formulating science plans based on the data sets obtained from the mission. It is expected that in the next few months, interesting results about lunar topography, mineral and chemical contents of the Moon and related aspects are expected to be published.{{cite news |url=http://www.spacedaily.com/reports/Chandrayaan_Enables_Study_Interaction_Without_Magnetic_Field_999.html |title=Chandrayaan Enables Study Interaction Without Magnetic Field |date=10 September 2009 |access-date=26 September 2009 |publisher=SpaceDaily.com |archive-url=https://web.archive.org/web/20090914001206/http://www.spacedaily.com/reports/Chandrayaan_Enables_Study_Interaction_Without_Magnetic_Field_999.html |archive-date=14 September 2009 |url-status=dead }} [288] => [289] => The Chandrayaan-1 payload has enabled scientists to study the interaction between the solar wind and a planetary body like the Moon without a magnetic field.{{cite news |url=http://www.dnaindia.com/bangalore/report_chandrayaan-enables-study-interaction-without-magnetic-field_1288577 |title=Chandrayaan enables study interaction without magnetic field |date=8 September 2009 |access-date=26 September 2009 |publisher=DNAIndia.com |archive-date=11 September 2009 |archive-url=https://web.archive.org/web/20090911161301/http://www.dnaindia.com/bangalore/report_chandrayaan-enables-study-interaction-without-magnetic-field_1288577 |url-status=live }} [290] => [291] => In its 10-month orbit around the Moon, Chandrayaan-1's X-ray Spectrometer (C1XS) detected titanium, confirmed the presence of calcium, and gathered the most accurate measurements yet of magnesium, aluminium and iron on the lunar surface.{{cite news |url=http://www.hindu.com/2009/09/19/stories/2009091958942000.htm |archive-url=https://web.archive.org/web/20090923175737/http://www.hindu.com/2009/09/19/stories/2009091958942000.htm |url-status=dead |archive-date=23 September 2009 |title=Solar flares shine light on Moon's minerals |date=19 September 2009 |work=[[The Hindu]] |access-date=26 September 2009 }} [292] => [293] => === Lunar water discovery === [294] => [[File:Direct evidence of lunar water.jpg|thumb|Direct evidence of lunar water through Chandrayaan-1 Chandra's Altitudinal Composition (CHACE) output profile]] [295] => [[File:Chandrayaan1 Spacecraft Discovery Moon Water.jpg|thumb|These images show a very young lunar crater on the side of the Moon that faces away from Earth, as viewed by Chandrayaan-1's NASA Moon Mineralogy Mapper equipment ]] [296] => [297] => On 18 November 2008, the [[Moon Impact Probe]] was released from Chandrayaan-1 at a height of {{convert|100|km|mi|abbr=on}}. During its 25-minute descent, Chandra's Altitudinal Composition Explorer (CHACE) recorded evidence of water in 650 mass spectra readings gathered during this time.{{Cite web|url=http://www.planetary.org/blogs/emily-lakdawalla/2010/2430.html|title=Water on the Moon: Direct evidence from Chandrayaan-1's Moon Impact...|access-date=30 September 2014|archive-date=20 September 2019|archive-url=https://web.archive.org/web/20190920161640/http://www.planetary.org/blogs/emily-lakdawalla/2010/2430.html|url-status=live}} On 24 September 2009 ''[[Science (journal)|Science]]'' journal reported that the [[NASA]] Instrument [[Moon Mineralogy Mapper]] (M3) on Chandrayaan-1 had detected water ice on the Moon.{{cite news |url=http://www.sciencemag.org/cgi/content/abstract/sci;1178658v1 |title=Character and Spatial Distribution of OH/H2O on the Surface of the Moon Seen by M3 on Chandrayaan-1 |date=15 September 2009 |access-date=26 September 2009 |publisher=Science Mag |archive-date=18 November 2009 |archive-url=https://web.archive.org/web/20091118041025/http://www.sciencemag.org/cgi/content/abstract/sci;1178658v1 |url-status=live }} But, on 25 September 2009, ISRO announced that the MIP, another instrument on board Chandrayaan-1, had discovered water on the Moon just before impact and had discovered it 3 months before NASA's M3.{{cite news |url=http://www.thehindu.com/sci-tech/science/mip-detected-water-on-moon-way-back-in-june-isro-chairman/article24854.ece |title=MIP detected water on Moon way back in June: ISRO Chairman |work=[[The Hindu]] |date=25 September 2009 |access-date=9 June 2013 |location=Bangalore |archive-date=25 January 2016 |archive-url=https://web.archive.org/web/20160125193516/http://www.thehindu.com/sci-tech/science/mip-detected-water-on-moon-way-back-in-june-isro-chairman/article24854.ece |url-status=live }} The announcement of this discovery was not made until NASA confirmed it.{{cite news |url=http://www.dnaindia.com/scitech/1292942/report-chandrayaan-first-discovered-water-on-moon-but |title=Chandrayaan first discovered water on Moon, but? |work=[[Daily News and Analysis|DNA]] |date=25 September 2009 |agency=DNA |access-date=9 June 2013 |location=Bangalore |archive-date=11 June 2020 |archive-url=https://web.archive.org/web/20200611141014/https://www.dnaindia.com/technology/report-chandrayaan-first-discovered-water-on-moon-but-1292942 |url-status=live }}{{cite news |url=http://www.ndtv.com/article/sci-tech/did-india-beat-nasa-to-find-water-on-moon-9091 |title=Did India beat NASA to find water on Moon? |work=[[NDTV]] |date=25 September 2009 |access-date=9 June 2013 |author=Bagla, Pallav |location=Bangalore |archive-date=6 October 2014 |archive-url=https://web.archive.org/web/20141006180606/http://www.ndtv.com/article/sci-tech/did-india-beat-nasa-to-find-water-on-moon-9091 |url-status=live }} [298] => [299] => M3 detected absorption features near 2.8–3.0 μm on the surface of the Moon. For silicate bodies, such features are typically attributed to [[hydroxyl]]- and/or [[Water (properties)|water]]-bearing materials. On the Moon, the feature is seen as a widely distributed absorption that appears strongest at cooler high latitudes and at several fresh feldspathic craters. The general lack of correlation of this feature in sunlit M3 data with neutron spectrometer H abundance data suggests that the formation and retention of OH and H2O is an ongoing surficial process. OH/H2O production processes may feed polar cold traps and make the lunar regolith a candidate source of volatiles for human exploration.{{citation needed|date=September 2023}} [300] => [301] => The Moon Mineralogy Mapper (M3), an imaging spectrometer, was one of the 11 instruments on board Chandrayaan-I that came to a premature end on 28 August 2009.{{cite web |title=Welcome To ISRO:: Press Release:: 29 August 2009 |url=http://www.isro.org/pressrelease/scripts/pressreleasein.aspx?Aug29_2009 |url-status=dead |archive-url=https://web.archive.org/web/20120903104432/http://www.isro.org/pressrelease/scripts/pressreleasein.aspx?Aug29_2009 |archive-date=3 September 2012 }} 101004 isro.org M3 was aimed at providing the first mineral map of the entire lunar surface. M3 data were reanalyzed years later and revealed "the most definitive proof to date" of the presence of water in shaded regions of craters near the Moon's north and south poles. [302] => [303] => Lunar scientists had discussed the possibility of water repositories for decades. They are now increasingly "confident that the decades-long debate is over" a report says. "The Moon, in fact, has water in all sorts of places; not just locked up in [[minerals]], but scattered throughout the broken-up [[planetary surface|surface]], and, potentially, in blocks or sheets of ice at depth." The results from the Chandrayaan mission are also "offering a wide array of watery signals."{{cite news |url=https://www.usatoday.com/tech/science/2009-09-23-moon-water_N.htm |title=It's not lunacy, probes find water in Moon dirt |date=23 September 2009 |access-date=26 September 2009 |publisher=USA Today |archive-date=27 September 2009 |archive-url=https://web.archive.org/web/20090927052332/http://www.usatoday.com/tech/science/2009-09-23-moon-water_N.htm |url-status=live }}{{cite news |url=http://www.hindu.com/2009/09/23/stories/2009092357770100.htm |archive-url=https://web.archive.org/web/20090926073133/http://www.hindu.com/2009/09/23/stories/2009092357770100.htm |url-status=dead |archive-date=26 September 2009 |title=Water discovered on Moon?: "A lot of it actually" |date=23 September 2009 |work=[[The Hindu]] |access-date=26 September 2009 }} [304] => [305] => === Lunar water production === [306] => {{Main|Lunar water}} [307] => [308] => According to [[European Space Agency]] (ESA) scientists, the lunar regolith (a loose collection of irregular dust grains making up the Moon's surface) absorbs hydrogen nuclei from solar winds. Interaction between the hydrogen nuclei and oxygen present in the dust grains is expected to produce [[hydroxyl]] ({{chem2|HO-}}) and water ({{chem2|H2O}}).{{Cite book |url=https://books.google.com/books?id=Yt2nVk3xfOUC&pg=PA121 |title=India Space Programs and Exploration Handbook |date=August 2013 |publisher=International Business Publications, USA |isbn=9781433023149 }}{{Dead link|date=November 2023 |bot=InternetArchiveBot |fix-attempted=yes }} [309] => [310] => The SARA (Sub keV Atom Reflecting Analyser) instrument developed by ESA and the Indian Space Research Organisation was designed and used to study the Moon's surface composition and solar-wind/surface interactions. SARA's results highlight a mystery: not every hydrogen nucleus is absorbed. One out of every five rebounds into space, combining to form an atom of hydrogen.{{clarify|date=April 2012}}{{Citation needed|date=April 2012}} Hydrogen shoots off at speeds of around {{convert|200|km/s|mi/s}} and escapes without being deflected by the Moon's weak gravity. This knowledge provides timely advice for scientists who are readying ESA's ''[[BepiColombo]]'' mission to [[Mercury (planet)|Mercury]], as that spacecraft will carry two instruments similar to SARA. [311] => [312] => === Lunar caves === [313] => Chandrayaan-1 imaged a lunar [[rille]], formed by an ancient lunar lava flow, with an uncollapsed segment indicating the presence of a [[lunar lava tube]], a type of large cave below the lunar surface.A. S. Arya, R. P. Rajasekhar, Guneshwar Thangjam, Ajai and A. S. Kiran Kumar, [http://www.currentscience.ac.in/Volumes/100/04/0524.pdf "Detection of potential site for future human habitability on the Moon using Chandrayaan-1 data"] {{Webarchive|url=https://web.archive.org/web/20200730151705/http://www.currentscience.ac.in/Volumes/100/04/0524.pdf |date=30 July 2020 }}, [http://www.currentscience.ac.in/php/toc.php?vol=100&issue=04 ''Current Science, Vol. 100'', NO. 4] {{Webarchive|url=https://web.archive.org/web/20190502163317/http://www.currentscience.ac.in/php/toc.php?vol=100&issue=04 |date=2 May 2019 }}, 25 February 2011 (accessed 24 January 2015) The tunnel, which was discovered near the lunar equator, is an empty volcanic tube, measuring about {{convert|2|km|mi|abbr=on}} in length and {{convert|360|m|ft|abbr=on}} in width. According to A. S. Arya, scientist SF of Ahmedabad-based Space Application Centre (SAC), this could be a potential site for human settlement on the Moon.{{cite news |url=http://www.siliconindia.com/shownews/After_water_now_Indian_scientists_find_cave_on_Moon-nid-65281-cid--sid-.html |title=After water, now Indian scientists find cave on Moon |date=9 February 2010 |publisher=Silicon India |access-date=26 February 2010 |archive-date=5 July 2010 |archive-url=https://web.archive.org/web/20100705030745/http://www.siliconindia.com/shownews/After_water_now_Indian_scientists_find_cave_on_Moon-nid-65281-cid--sid-.html |url-status=live }} Earlier, Japanese Lunar orbiter [[SELENE]] (Kaguya) also recorded evidence for other caves on the Moon.{{cite journal |journal=National Geographic |url=http://phenomena.nationalgeographic.com/2016/03/25/scientists-may-have-spotted-buried-lava-tubes-on-the-moon/ |first=Nadia |last=Drake |author-link=Nadia Drake |title=Scientists May Have Spotted Buried Lava Tubes on the Moon |date=25 March 2016 |access-date=10 March 2017 |archive-date=23 February 2017 |archive-url=https://web.archive.org/web/20170223104121/http://phenomena.nationalgeographic.com/2016/03/25/scientists-may-have-spotted-buried-lava-tubes-on-the-moon/ |url-status=dead }} [314] => [315] => === Tectonism === [316] => Data from the microwave sensor (Mini-SAR) of Chandrayaan-1 processed using the image analysis software ENVI, has revealed a good amount of past [[Tectonism|tectonic activity]] on the lunar surface.{{cite journal |title=Moon shows Earth-like tectonic activity |journal=Nature India |date=25 April 2014 |last=Priyadarshini |first=Subhra |doi=10.1038/nindia.2014.57 |url=http://www.nature.com/nindia/2014/140425/full/nindia.2014.57.html |access-date=29 April 2014 |archive-date=29 April 2014 |archive-url=https://web.archive.org/web/20140429235119/http://www.nature.com/nindia/2014/140425/full/nindia.2014.57.html |url-status=live }} The researchers think that the faults and fractures discovered could be features of past interior tectonic activity coupled with meteorite impacts. [317] => [318] => == Awards == [319] => * The [[American Institute of Aeronautics and Astronautics]] (AIAA) has selected ISRO's Chandrayaan-1 mission as one of the recipients of its annual AIAA SPACE 2009 awards, which recognises key contributions to space science and technology.{{Cite web|url=https://www.domain-b.com/aero/aero_general/20090901_chandrayaan1.html|title=domain-b.com : American astronautics society award for Chandrayaan-1 team|website=www.domain-b.com|access-date=24 August 2023|archive-date=4 April 2023|archive-url=https://web.archive.org/web/20230404183843/https://www.domain-b.com/aero/aero_general/20090901_chandrayaan1.html|url-status=live}} [320] => * The [[International Lunar Exploration Working Group]] awarded the Chandrayaan-1 team the International Co-operation Award in 2008 for accommodation and tests of the most international lunar payload ever (from 20 countries, including India, the [[European Space Agency]] of 17 countries, US, and Bulgaria).{{cite news |url=http://www.tribuneindia.com/2008/20081201/nation.htm#14 |title=Chandrayaan-1 wins global award |date=30 November 2008 |agency=Tribune News Service |access-date=2 February 2015 |author=Choudhury, Shubhadeep |location=Bangalore |archive-date=8 August 2014 |archive-url=https://web.archive.org/web/20140808030908/http://www.tribuneindia.com/2008/20081201/nation.htm#14 |url-status=live }} [321] => * US-based [[National Space Society]] awarded ISRO the 2009 [[Space Pioneer Awards|Space Pioneer Award]] in the science and engineering category, for the Chandrayaan-1 mission.{{cite web |url=http://www.nss.org/awards/2009.html |title=NSS awards for 2009 |publisher=National Space Society |access-date=2 February 2015 |archive-date=2 February 2015 |archive-url=https://web.archive.org/web/20150202011649/http://www.nss.org/awards/2009.html |url-status=dead }}{{cite web |url=http://www.nasa.gov/centers/ames/news/features/2010/lcross_award.html |title=NASA's Lunar Impact Mission Honored by National Space Society |publisher=National Aeronautics and Space Administration |date=17 June 2010 |access-date=2 February 2015 |author=Hoover, Rachel |archive-date=9 January 2013 |archive-url=https://web.archive.org/web/20130109115404/http://www.nasa.gov/centers/ames/news/features/2010/lcross_award.html |url-status=live }} [322] => [323] => == Team == [324] => The scientists considered instrumental to the success of the Chandrayaan-1 project are:{{cite news |url=http://www.ndtv.com/convergence/ndtv/moonmission/Election_Story.aspx?id=NEWEN20080069746 |title=The men behind the mission |date=22 October 2008 |access-date=31 October 2008 |publisher=NDTV |url-status=dead |archive-url=https://web.archive.org/web/20081026232401/http://www.ndtv.com/convergence/ndtv/moonmission/Election_Story.aspx?id=NEWEN20080069746 |archive-date=26 October 2008 }}{{cite news |url=http://economictimes.indiatimes.com/articleshow/msid-3598007.cms |title=Looking beyond Chandrayaan-1 |date=15 October 2008 |access-date=30 October 2008 |work=Economic Times |archive-date=13 January 2009 |archive-url=https://web.archive.org/web/20090113200956/http://economictimes.indiatimes.com/articleshow/msid-3598007.cms |url-status=live }}{{cite news |url=http://www.zeenews.com/chandrayaan/story.aspx?aid=477110 |title=The Chandrayaan Team |access-date=30 October 2008 |publisher=Zee News |archive-date=23 October 2008 |archive-url=https://web.archive.org/web/20081023191151/http://www.zeenews.com/chandrayaan/story.aspx?aid=477110 |url-status=live }} [325] => [326] => * [[G. Madhavan Nair]] – chairman, Indian Space Research Organisation [327] => * [[T. K. Alex]] – Director, ISAC (ISRO Satellite Centre) [328] => * [[Mylswamy Annadurai]] – Project Director, Chandrayan-1 [329] => * [[S. K. Shivkumar]] – Director – Telemetry, Tracking and Command Network [330] => * [[M. Pitchaimani]] – Operations Director, Chandrayaan-1 [331] => * Leo Jackson John – Spacecraft Operations Manager, Chandrayaan-1 [332] => * [[K. Radhakrishnan (scientist)|K. Radhakrishnan]] – Director, VSSC [333] => * George Koshy – Mission Director, PSLV-C11 [334] => * Srinivasa Hegde – Mission Director, Chandrayaan-1 [335] => * [[Jitendra Nath Goswami]] – Director of Physical Research Laboratory and Principal Scientific Investigator of Chandrayaan-1 [336] => * [[Madhavan Chandradathan]] – Head, Launch Authorization Board, Chandrayan-1{{cite web |url=http://www.telegraphindia.com/1081023/jsp/nation/story_10008285.jsp |archive-url=https://archive.today/20141028143218/http://www.telegraphindia.com/1081023/jsp/nation/story_10008285.jsp |url-status=dead |archive-date=28 October 2014 |title=Launch authorization board |publisher=Telegraph India |date=23 October 2008 |access-date=28 October 2014}} [337] => [338] => == Public release of data == [339] => Data gathered by Chandrayaan-I was made available to the public by the end of the year 2010. The data was split into two seasons with the first season going public by the end of 2010 and the second going public by the mid of 2011. The data contained pictures of the Moon and also data of chemical and mineral mapping of the lunar surface.{{cite news |url=http://www.space-travel.com/reports/Data_From_Chandrayaan_Moon_Mission_To_Go_Public_999.html |title=Data From Chandrayaan Moon Mission To Go Public |date=6 September 2010 |access-date=10 September 2010 |publisher=Space-Travel |archive-url=https://web.archive.org/web/20100909142705/http://www.space-travel.com/reports/Data_From_Chandrayaan_Moon_Mission_To_Go_Public_999.html |archive-date=9 September 2010 |url-status=dead}} [340] => [341] => == Follow-up missions == [342] => {{Main|Chandrayaan-2|Chandrayaan-3}} [343] => ''Chandrayaan-2'' is a follow-up mission which was launched on 22 July 2019.{{Cite web|url=https://www.isro.gov.in/update/22-jul-2019/gslv-mkiii-m1-successfully-launches-chandrayaan-2-spacecraft|title=GSLV MkIII-M1 Successfully Launches Chandrayaan-2 spacecraft – ISRO|website=www.isro.gov.in|access-date=23 July 2019|archive-date=12 December 2019|archive-url=https://web.archive.org/web/20191212123035/https://www.isro.gov.in/update/22-jul-2019/gslv-mkiii-m1-successfully-launches-chandrayaan-2-spacecraft|url-status=dead}} The mission includes a lunar orbiter, a lander named ''Vikram'' and a robotic [[lunar rover]] named [[Pragyan (Chandrayaan-2)|''Pragyan'']].{{Cite web |url=http://164.100.158.235/question/annex/241/Au1084.pdf |title=Question No. 1084: Deployment of Rover on Lunar Surface |publisher=[[Rajya Sabha]] |first1=T. |last1=Rathinavel |author1-link=T. Rathinavel |first2=Jitendra |last2=Singh |author2-link=Jitendra Singh (BJP politician) |date=24 November 2016 |access-date=2 August 2017 |archive-date=2 August 2017 |archive-url=https://web.archive.org/web/20170802142742/http://164.100.158.235/question/annex/241/Au1084.pdf |url-status=live }} While a last-minute glitch in the landing guidance software resulted in the lander crashing, the Chandrayaan-2 orbiter is operational {{As of|2023|September|alt=as of September 2023}}.{{cite news |last=Guptan |first=Mahesh |date=2019-11-16 |title=How did Chandrayaan 2 fail? ISRO finally has the answer |newspaper=The Week |url=https://www.theweek.in/news/sci-tech/2019/11/16/how-did-chandrayaan-2-fail-isro-answer.html |access-date=2020-01-03 |archive-date=19 February 2021 |archive-url=https://web.archive.org/web/20210219143203/https://www.theweek.in/news/sci-tech/2019/11/16/how-did-chandrayaan-2-fail-isro-answer.html |url-status=live }} A third mission, called [[Chandrayaan-3]] was launched on 14 July 2023 and it successfully soft-landed on Moon on 23 August 2023{{cite web |title=Chandrayaan-3 |url=https://www.isro.gov.in/Chandrayaan3.html |access-date=14 July 2023 |website=www.isro.gov.in |archive-date=10 July 2023 |archive-url=https://web.archive.org/web/20230710170915/https://www.isro.gov.in/Chandrayaan3.html |url-status=live }} [344] => [345] => == Lunar outpost == [346] => Chandrayaan's imagery will be used to identify regions of interest that will be explored in detail by the NASA [[Lunar Reconnaissance Orbiter]]. The interest lies in identifying [[lunar water]] on the surface that can be exploited in setting up a future [[Lunar outpost (NASA)|lunar outpost]]. The Mini-SAR, one of the U.S. payloads on Chandrayaan, was used to determine the presence of water ice.{{cite news |url=https://www.space.com/3296-moonbase-dark-lunar-ice.html |title=Moonbase: In the Dark on Lunar Ice |work=Space.com |first=Leonard |last=David |date=26 December 2006 |access-date=9 August 2017 |archive-date=9 August 2017 |archive-url=https://web.archive.org/web/20170809130226/https://www.space.com/3296-moonbase-dark-lunar-ice.html |url-status=live }} [347] => [348] => == See also == [349] => {{Portal|Spaceflight|Solar System|India}} [350] => * [[Exploration of the Moon]] [351] => * [[Gaganyaan]], India's crewed orbital spacecraft [352] => * [[List of artificial objects on the Moon]] [353] => * [[List of current and future lunar missions]] [354] => * [[List of Indian satellites]] [355] => * [[List of ISRO missions]] [356] => * [[Lunar water]] [357] => {{Clear}} [358] => [359] => == References == [360] => {{Reflist|30em}} [361] => [362] => == External links == [363] => {{Commons category|Chandrayaan-1}} [364] => * {{Official website|http://www.isro.gov.in/Spacecraft/chandrayaan-1}} [365] => * {{cite book |url=http://www.isro.org/publications/pdf/Chandrayaan-1-booklet.pdf |title=Chandrayaan-1: India's First Mission to Moon |publisher=Indian Space Research Organisation |first1=Jayati |last1=Datta |first2=S. C. |last2=Chakravarty |date=2009 |archive-url=https://web.archive.org/web/20091012220210/http://www.isro.org/publications/pdf/Chandrayaan-1-booklet.pdf |archive-date=12 October 2009}} [366] => [367] => {{Indian space programme}} [368] => {{Indian spacecraft}} [369] => {{Moon spacecraft}} [370] => {{Solar System probes}} [371] => {{Orbital launches in 2008}} [372] => [373] => [[Category:Space probes launched in 2008]] [374] => [[Category:2008 in India]] [375] => [[Category:Missions to the Moon]] [376] => [[Category:Indian lunar exploration programme]] [377] => [[Category:ISRO space probes]] [378] => [[Category:Space synthetic aperture radar]] [379] => [[Category:Space radar altimeters]] [380] => [[Category:Spacecraft launched by PSLV rockets]] [] => )
good wiki

Chandrayaan-1

Chandrayaan-1 was India's first lunar exploration mission launched by the Indian Space Research Organisation (ISRO) in October 2008. It was the first mission to discover evidence of water on the Moon.

More about us

About

It was the first mission to discover evidence of water on the Moon. The spacecraft consisted of an orbiter and an impactor probe called the Moon Impact Probe (MIP). The orbiter carried scientific instruments to study the lunar surface, mapping its topography and mineral composition. It also conducted experiments to detect the presence of water molecules and assess the Moon's mineralogy. The MIP, on the other hand, was designed to crash into the lunar surface near the Shackleton Crater, providing valuable data. Chandrayaan-1 operated successfully for about ten months, during which it provided valuable data on the Moon's topography, mineralogy, and temperature variations. It discovered water ice below the lunar surface, challenging the previous belief that the Moon was completely arid. The mission also confirmed traces of hydroxyl—a component of water—on the lunar surface. However, in August 2009, the mission experienced communication problems, leading to the loss of contact with the spacecraft. Despite the communication breakdown, Chandrayaan-1 achieved numerous scientific milestones and contributed significantly to our understanding of the Moon's geological and mineralogical characteristics. Chandrayaan-1 paved the way for future lunar exploration missions, including India's Chandrayaan-2, which successfully launched in 2019 and aims to further explore the Moon's south pole region. The success of Chandrayaan-1 also established ISRO as a space exploration powerhouse and showcased India's technological capabilities in space science.

Expert Team

Vivamus eget neque lacus. Pellentesque egauris ex.

Award winning agency

Lorem ipsum, dolor sit amet consectetur elitorceat .

10 Year Exp.

Pellen tesque eget, mauris lorem iupsum neque lacus.